
COMSOL Multiphysics
Application Programming Guide

C o n t a c t I n f o r m a t i o n
Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact

Technical Support, or search for an address and phone number. You can also visit the Worldwide

Sales Offices page at www.comsol.com/contact/offices for address and contact information.

If you need to contact Support, an online request form is located at the COMSOL Access page at

www.comsol.com/support/case. Other useful links include:

• Support Center: www.comsol.com/support

• Product Download: www.comsol.com/product-download

• Product Updates: www.comsol.com/support/updates

• COMSOL Blog: www.comsol.com/blogs

• Discussion Forum: www.comsol.com/community

• Events: www.comsol.com/events

• COMSOL Video Gallery: www.comsol.com/video

• Support Knowledge Base: www.comsol.com/support/knowledgebase

Part number: CM020012

A p p l i c a t i o n P r o g r a m m i n g G u i d e
© 1998–2016 COMSOL

Protected by U.S. Patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991;
8,457,932; 8,954,302; 9,098,106; 9,146,652; and 9,323,503. Patents pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License
Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the
license agreement.

COMSOL, the COMSOL logo, COMSOL Multiphysics, Capture the Concept, COMSOL Desktop, LiveLink, and
COMSOL Server are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the
property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with,
endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see
www.comsol.com/trademarks.

Version: COMSOL 5.2a

http://www.comsol.com/contact/
http://www.comsol.com/contact/offices/
http://www.comsol.com/support/case/
http://www.comsol.com/support/
http://www.comsol.com/product-download/
http://www.comsol.com/support/updates/
http://www.comsol.com/blogs/
http://www.comsol.com/community/
www.comsol.com/patents/
http://www.comsol.com/events/
http://www.comsol.com/video/
http://www.comsol.com/comsol-license-agreement/
http://www.comsol.com/trademarks/
http://www.comsol.com/support/knowledgebase/

Contents

Introduction . 7

Syntax Primer . 8

Data Types. 8

The Declarations Node . 13

Built-in Elementary Math Functions. 14

Control Flow Statements . 14

Important Programming Tools . 16

Ctrl+Space for Code Completion . 16

Recording Code . 18

Introduction to the Model Object . 22

Model Object Tags . 22

Creating a Model Object . 24

Creating Model Components and Model Object Nodes . . 25

Get and Set Methods for Accessing Properties 26

Parameters and Variables . 31

Unary and Binary Operators in the Model Object 33

Geometry. 34

Mesh . 36

Physics . 37

Material. 39

Study. 41

Results . 45

Multiphysics . 47

Working with Model Objects . 48

The Model Object Class Structure . 49
 | 3

The Application Object . 51

Shortcuts . 51

Accessing the Application Object. 53

The Name of User Interface Components 53

Important Classes . 53

Get and Set Methods for Color . 54

General Properties . 55

The Main Application Methods. 56

Main Window . 57

Form. 58

Form Object . 59

Item . 77

Data Source: Choice List and Unit Set 78

Form, Form Object, and Item List Methods 80

The Built-in Method Library for the Application Builder. 82

Model Utility Methods . 82

File Methods . 83

Operating System Methods. 89

Email Methods. 93

Email Class Methods. 93

GUI-Related Methods . 97

GUI Command Methods . 107

Debug Method . 108

Methods for External C Libraries . 108

Progress Methods . 110

Date and Time Methods . 116

License Methods . 118

Conversion Methods . 119
4 |

Array Methods .121

String Methods .127

Collection Methods .129
 | 5

6 |

Introduction

This book is a guide to writing code for COMSOL® applications using the
Method editor. The Method editor is an important part of the Application Builder
and is available in the COMSOL Desktop® environment in the Windows® version
of COMSOL Multiphysics. For an introduction to using the Application Builder
and its Form editor and Method editor, see the book Introduction to Application
Builder.
Writing a method is needed when an action is not already available in the standard
run commands associated with functionality in the model tree nodes of the Model
Builder. A method may, for example, contain loops, process inputs and outputs,
and send messages and alerts to the user of the application.
In the Model Builder, the model tree is a graphical representation of the data
structure that represents a model. This data structure is called the model object
and stores the state of the underlying COMSOL Multiphysics model that is
embedded in an application.
The contents of the application tree in the Application Builder is accessed through
the application object, which is an important part of the model object. You can
write code using the Method editor to directly access and change the user interface
of a running application, for example, to update button text, icons, colors, and
fonts.
In the COMSOL Multiphysics environment, you use the Java® programming
language to write methods, which means that you can utilize the extensive
collection of Java® libraries. In addition to the Java® libraries, the Application
Builder includes a built-in library for building applications and modifying the
model object. A number of tools and resources are available to help you
automatically create code for methods. For more information on autogeneration
of code, see the book Introduction to Application Builder.
This book assumes no prior knowledge of the Java® programming language.
However, some familiarity with a programming language is helpful.
 | 7

Syntax Primer

If you are not familiar with the Java® programming language, read this section to
quickly get up to speed with its syntax. When creating applications, it is useful to
know the basics of Java such as how to use the if, for, and while control
statements. The more advanced aspects of Java will not be covered in this book.
For more detail, see any dedicated book on Java programming or one of the many
online resources. You can also learn a lot by reviewing the methods in the example
applications available in the Application Libraries.

Data Types

PRIMITIVE DATA TYPES

Java contains eight primitive data types, listed in the table below.

Other data types such as strings are classes, which are also referred to as composite
data types.
In methods, you can use any5 of the primitive or composite data types available in
Java and the Java libraries. Many of the Application Builder built-in methods make
use of primitive or composite data types. For example, the timeStamp() method
provides a long integer as its output.

ASSIGNMENTS AND LITERALS

A few examples of using literals in assignments are:
int i=5; // initialize i and assign the value 5

DATA TYPE DESCRIPTION EXAMPLE

byte Integer between -127 and 128 byte b=33;

char Unicode character; integer between 0 and 65535 (0 and
216-1)

char c=’a’;

char c=97;

short Integer between -32768 and 32767 (-215-1 and 215-1) short s=-1025;

int Integer between 231 and 231-1 int i=15;

long Integer between 263 and 263-1 long l=15;

float 32-bit floating point number float f =4.67f;

double 64-bit floating point number double d=4.67;

boolean Boolean with values false or true boolean b=true;
8 |

double d=5.0; // initialize d and assign the value 5.0
boolean b=true; // initialize b and assign the value true

The constants 5, 5.0, and true are literals. Java distinguishes between the literals
5 and 5.0, where 5 is an integer and 5.0 is a double (or float).

UNARY AND BINARY OPERATORS IN METHODS (JAVA SYNTAX)
You can perform calculations and operations using primitive data types just like
with many other programming languages. The table below describes some of the
most common unary and binary operators used in Java code.

TYPE CONVERSIONS AND TYPE CASTING

When programming in Java, conversion between data types is automatic in many
cases. For example, the following lines convert from an integer to a double:

int i; // initialize i
double d; //initialize d
i=41;
d=i; // the integer i is assigned to the double d and d is 41.0

However, the opposite will not work automatically (you will get a compilation
error). Instead you can use explicit type casting as follows:

PRECEDENCE LEVEL SYMBOL DESCRIPTION

1 ++ -- unary: postfix addition and subtraction

2 ++ -- + - ! unary: addition, subtraction, positive sign,
negative sign, logical not

3 * / % binary: multiplication, division, modulus

4 + - binary: addition, subtraction

5 ! Logical NOT

6 < <= > >= comparisons: less than, less than or equal,
greater than, greater than or equal

7 == != comparisons: equal, not equal

8 && binary: logical AND

9 || binary: logical OR

10 ?: conditional ternary

11 = += -= *= /=
%= >>= <<= &=
^= |=

assignments

12 , element separator in lists
 | 9

int i; // initialize i
double d; //initialize d
d=41.0;
i=(int) d; // the double d is assigned to the integer i and i is 41

You can convert between integers and doubles within arithmetic statements in
various ways, however you will need to keep track of when the automatic type
conversions are made. For example:

int i; // initialize i
double d; //initialize d
i=41;
d=14/i; // d is 0

In the last line, 14 is seen as an integer literal and the automatic conversion to a
double is happening after the integer division 14/41, which results in 0.
Compare with:

int i; // initialize i
double d; //initialize d
i=41;
d=14.0/i; // d is 0.3414...

In the last line, 14.0 is seen as a double literal and the automatic conversion to a
double is happening before the division and is equivalent to 14.0/41.0.
You can take charge over the type conversions with explicit casting by using the
syntax (int) or (double):

int i; // initialize i
double d,e; //initialize d and e
i=41;
d=((int) 14.0)/i; // d is 0
e=14/((double) i); // e is 0.3414...

STRINGS AND JAVA OBJECTS

The String data type is a Java object. This is an example of how to declare a string
variable:

String a="string A";

When declaring a string variable, the first letter of the data type is capitalized. This
is a convention for composite data types (or object-oriented classes).
After you have declared a string variable, a number of methods are automatically
made available that can operate on the string in various ways. Two such methods
are concat and equals as described below, but there are many more methods
available in the String class. See the online Java documentation for more
information.

Concatenating Strings
To concatenate strings, you can use the method concat as follows:
10 |

String a="string A";
String b=" and string B";
a.concat(b);

The resulting string a is "string A and string B". From an object-oriented
perspective, the variable a is an instance of an object of the class String. The
method concat is defined in the String class and available using the a.concat()
syntax.
Alternatively, you can use the + operator as follows:

a=a+b;

which is equivalent to:
a="string A" + " and string B";

and equivalent to:
a="string A" + " " + "and string B";

where the middle string is a string with a single whitespace character.

Comparing Strings
Comparing string values in Java is done with the equals method and not with the
== operator. This is due to the fact that the == operator compares whether the
strings are the same when viewed as class objects and does not consider their
values. The code below demonstrates string comparisons:

boolean streq=false;
String a="string A";
String b="string B";
streq=a.equals(b);
// In this case streq==false

streq=(a==b);
// In this case streq==false

b="string A";
streq=a.equals(b);

// In this case streq==true

ARRAYS

In the application tree, the Declarations node directly supports 1D and 2D arrays
of type string (String), integer (int), Boolean (boolean), or double (double). A
1D array may be referred to as a vector and a 2D array referred to as a matrix,
provided that the array is rectangular. A non-rectangular array is called jagged or
ragged. In methods, you can define higher-dimensional arrays as well as arrays of
data types other than string, integer, Boolean, or double.
 | 11

1D Arrays
If you choose not to use the Declarations node to declare an array, then you can
use the following syntax in a method:

double dv[] = new double[12];

This declares a double array of length 12.
The previous line is equivalent to the following two lines:

double dv[];
dv = new double[12];

When a double vector has been declared in this way, the value of each element in
the array will be zero.
To access elements in an array you use the following syntax:

double e;
e=dv[3]; // e is 0.0

Arrays are indexed starting from 0. This means that dv[0] is the first element of
the array in the examples above, and dv[11] is the last element.
You can simultaneously declare and initialize the values of an array by using curly
braces:

double dv[] = {4.1, 3.2, 2.93, 1.3, 1.52};

In a similar way you can create an array of strings as follows:
String sv[] = {"Alice", "Bob", "Charles", "David", "Emma"};

2D Arrays
2D rectangular arrays can be declared as follows:

double dm[][] = new double[2][3];

This corresponds to a matrix of doubles with 2 rows and 3 columns. The row
index comes first.
You can simultaneously declare and initialize a 2D array as follows:

double dm[][] = {{1.32, 2.11, 3.43},{4.14, 5.16, 6.12}};

where the value of, for example, dm[1][0] is 4.14. This array is a matrix since it is
rectangular (it has same number of columns for each row). You can declare a
ragged array as follows:

double dm[][] = {{1.32, 2.11}, {4.14, 5.16, 6.12, 3.43}};

where the value of, for example, dm[1][3] is 3.43.

Copying Arrays
For copying arrays, the following code:

for(int i1=0;i1<=11;i1++) {
for(int i2=0;i2<=2;i2++) {
input_array[i1][i2]=init_input_array[i1][i2];
12 |

}
}

is not equivalent to the line:
input_array=init_input_array;

since the last line will only copy by reference.
Instead, you can use the copy method as follows:

input_table = copy(init_input_table);

which allocates a new array and then copies the values.

The Declarations Node

Variables defined in the Declarations node in the application tree are directly
available as global variables in a method and need no further declarations.

Variables declared in methods will have local scope unless you specify otherwise.
The Declarations node directly supports integers (int), doubles (double), and
Booleans (boolean). In addition, strings are supported (see “Strings and Java
Objects” on page 10). In the Declarations node, variables can be scalars, 1D arrays,
and 2D arrays.
To simplify referencing form objects as well as menu, ribbon, and toolbar items by
name, you can create shortcuts with a custom name. These names are available in
the Declarations node under Shortcuts. They are directly available in methods along
with the other global variables defined under Declarations. For more information
on shortcuts, see “Shortcuts” on page 51.
 | 13

Built- in Elementary Math Functions

Elementary math function for use in methods are available in the Java math library.
Some examples:

double a = Math.PI; // the mathematical constant pi
double b = Math.sin(3*a); // trigonometric sine function
double c = Math.cos(4*a); // trigonometric cosine function
double d = Math.random(); // random number uniformly distributed in [0,1)
double e = Math.exp(2*a); // exponential function
double f = Math.log(1+e); // natural base e logarithm
double g = Math.pow(10,3) // power function
double h = Math.log10(2.5); // base 10 logarithm
double k = Math.sqrt(81.0); // square root

There are several more math functions available in the Java math library. For
additional information, see any Java book or online resource.

Control Flow Statements

Java supports the usual control flow statements if-else, for, and while. The
following examples illustrate some of the most common uses of control flow
statements.

THE IF-ELSE STATEMENT

This is an example of a general if-else statement:
if(a<b) {

alert("Value too small.");
} else {

alert("Value is just right.");
}

Between curly braces {} you can include multiple lines of code, each terminated
with a semicolon. If you only need one line of code, such as in the example above,
this shortened syntax is available:

if(a<b)
alert("Value too small.");

else
alert("Value is just right.");

THE FOR STATEMENT

Java supports several different types of for statements. This example uses the
perhaps most conventional syntax:

// Iterate i from 1 to N:
14 |

int N=10;
for (int i = 1; i <= N; i++) {
 // Do something
}

THE WHILE STATEMENT

This example shows a while statement.
double t=0,h=0.1,tend=10;
while(t<tend) {
 //do something with t
 t=t+h;
}

For a more advanced example of a while statement, see “Creating and Removing
Model Tree Nodes” on page 38.
Note that Java also supports do-while statements.

THE WITH STATEMENT

When writing methods in the Method editor, in addition to the standard Java
control flow statement, there is also a with statement that is used to make
Application Builder code more compact and easier to read. A simple example is
shown below:

// Set the global parameter L to a fixed value
with(model.param());
 set("L", "10[cm]");
endwith();

The code above is equivalent to:
model.param().set("L", "10[cm]");

In this case using the with statement has limited value since just one parameter is
assigned but for multiple assignments readability increases. See “Parameters and
Variables” on page 31 for an example with multiple assignments.
Note that the with statement is only available when writing code in the Method
editor. It is not available when using the COMSOL API for use with Java®.
The method descr returns the variable description for the last parameter or
variable in a with statement:

with(model.param());
set("L", "10[cm]");
String ds = descr("L");

endwith();

Assuming that the parameter description of the parameter L is Length. The string
ds will have the value Length.
 | 15

Important Programming Tools

The Method editor includes several tools for automatically generating code. These
tools include code completion, Record Code, Convert to New Method, Editor Tools,
Language Elements, and Copy as Code to Clipboard, and are described in the book
Introduction to Application Builder. These utilities allow you to quickly get up
and running with programming tasks even if you are not familiar with the syntax.
The following sections describes two of the most important tools: code
completion using Ctrl+Space and Record Code. Using these tools will make you
more productive, for example, by allowing you to copy-paste or auto-generate
blocks of code.

Ctrl+Space for Code Completion

While typing code in the Method editor, the Application Builder can provide
suggestions for code completions. The list of possible completions are shown in a
separate completion list that opens while typing. In some situations, detailed
information appears in a separate window when an entry is selected in the list.
Code completion can always be requested with the keyboard shortcut Ctrl+Space.
When accessing parts of the model object, you will get a list of possible
completions, as shown in the figure below:

Select a completion by using the arrow keys to choose an entry in the list and
double-click, or press the Tab or Enter key, to confirm the selection.
If the list is long, you can filter by typing the first few characters of the completion
you are looking for.
16 |

For example, if you enter the first few characters of a variable or method name,
and press Ctrl+Space, the possible completions are shown:

In the example above, only variables that match the string iv are shown. This
example shows that variables local to the method also appear in the completion
suggestions.
You can also use Ctrl+Space to learn about the syntax for the built-in methods that
are not directly related to the model object. Type the name of the command and
use Ctrl+Space to open a window with information on the various calling
signatures available.

The Method editor also supports code completion for properties, including listing
the properties that are available for a given model object feature node, and
providing a list of allowed values that are available for a given property.
The figure below shows an example of code completion for the mesh element size
property, where a list of the allowed values for the predefined element sizes is
presented.
 | 17

Recording Code

Click the Record Code button in the Code section of the Method editor ribbon to
record a sequence of operations that you perform using the model tree, as shown
in the figure below.

Certain operations in the application tree can also be recorded, for example, code
that changes the color of a text label in a running application may be generated.
To record a new method, click the Record a New Method button in the Main section
of the Method editor ribbon.

While recording code, the COMSOL Desktop windows are surrounded by a red
frame:
18 |

To stop recording code, click one of the Stop Recording buttons in the ribbon of
either the Model Builder or the Application Builder.

By using Model Data Access, you can set the values of the Heat transfer coefficient
and the External temperature properties of the busbar tutorial model used in the
 | 19

books Introduction to COMSOL Multiphysics and Introduction to Application
Builder.

To generate similar code using Record Code (Model Data Access is not used when
recording code), follow these steps:
• Create a simple application based on the busbar model (MPH file).
• In the Model Builder window, click Record a New Method, or with the Method

editor open, click Record Code.
• Change the value of the Heat transfer coefficient to 5.
• Change the value of the External temperature to 300[K].
• Click Stop Recording.
• If it is not already open, open the method with the recorded code.

The resulting code is listed below:
with(model.physics("ht").feature("hf1"));
 set("h", "5");
 set("Text", "300[K]");
endwith();
20 |

In this case, the autogenerated code contains a with() statement in order to make
the code more compact. For more information on the use of with(), see “The
With Statement” on page 15.
To generate code corresponding to changes to the application object, use Record
Code or Record a New Method, then go to the Form editor and, for example, change
the appearance of a form object. The following code corresponds to changing the
color of a text label from the default Inherit to Blue:

with(app.form("form1").formObject("textlabel1"));
set("foreground", "blue");

endwith();

Use the tools for recording code to quickly learn how to interact with the model
object or the application object. The autogenerated code shows you the names of
properties, parameters, and variables. Use strings and string-number conversions
to assign new parameter values in model properties. By using Model Data Access
while recording, you can, for example, extract a parameter value using get, process
its value in a method, and save it back into the model object using set. For more
information on Model Data Access, see the Introduction to Application Builder.
 | 21

Introduction to the Model Object

The model object is the data structure that stores the state of the COMSOL
Multiphysics model. The model object contents are reflected in the COMSOL
Desktop user interface by the structure of the Model Builder and its model tree.
The model object is associated with a large number of methods for setting up and
running sequences of operations such as geometry sequences, mesh sequences,
and study steps. As an alternative to using the Model Builder, you can write
programs in the Method editor that directly access and change the contents of the
model object.
The model object methods are structured in a tree-like way, similar to the nodes
in the model tree. The top-level methods just return references that support
further methods. At a certain level the methods perform actions, such as adding
data to the model object, performing computations, or returning data.
For a complete list of methods used to edit the model object, see the
Programming Reference Manual. For an introduction to using the Model
Builder, see the book Introduction to COMSOL Multiphysics.
The contents of the application tree in the Application Builder are accessed
through the application object, which is an important part of the model object.
You can write code using the Method editor to alter, for example, button text,
icons, colors, and fonts in the user interface of a running application.

Model Object Tags

In the model tree and when working with the model object from methods, tags
are used as handles to different parts of the model object. These tags can also be
made visible in the Model Builder by first clicking the Model Builder toolbar
menu Model Tree Node Text and then choosing Tag, as shown in the figure below.
22 |

The figures below show an example of a model tree without tags shown in the left
figure and with tags shown in the right figure.

In code, the tags are referenced using double quotes. For example, in the
following line

model.geom("geom1").create("r1", "Rectangle");

geom1 is a tag for a geometry object and r1 is a tag for a rectangle object. The
following sections contain multiple examples of using tags to create and edit parts
of a model object.
The option Name, available in the Model Tree Node Text menu in the Model Builder
toolbar, represents the name used for scoping. The scope names are used to access
the different parts of the model object. This is important, for example, when
working with global variables for defining the constraints and objective functions
for an optimization study. In the figure below, the variables mass, freq, and
 | 23

maxStress are referenced by scope names: comp1.mass, comp1.solid.freq, and
comp1.maxStress.

Using scope names avoids name collisions in cases where there are multiple model
components or multiple physics interfaces with identical variable names.

Creating a Model Object

If you create an application using the Model Builder and the Application Builder,
then a model object model is automatically created the first time you enter the
Model Builder. You may also create an embedded model with a call to the
createModel method:

Model model = createModel("Model1");

The model tag Model1 is automatically created and may instead be Model2,
Model3, and so on, to ensure a unique model tag (this depends on which model
tags were used previously). When using the Model Wizard, the creation of the
model tag is automatically handled.
24 |

When writing methods in the Method editor you can directly access the model
object model without first calling createModel.
If you want to create additional model objects in the same application, then you
need to call createModel or load a model object from file. For more information
on working with several model objects, see the section “Working with Model
Objects” on page 48.

Creating Model Components and Model Object Nodes

A model contains one or more model components. You create a model
component as follows:

model.modelNode().create("comp1");

The component is given a definite spatial dimension when you create a geometry
node:

model.geom().create("geom1", 2);

where the second argument can be 0, 1, 2, or 3, depending on the spatial
dimension. In the example above, the spatial dimension is 2.
In addition to creating model components and geometry nodes, there are create
methods for many of the nodes in the model tree.
Whether the geometry should be interpreted as being axisymmetric or not is
determined by a Boolean property that you can assign as follows:

boolean makeaxi=true;
model.geom("geom1").axisymmetric(makeaxi);

The axisymmetric property is only applicable to models of spatial dimension 1 or
2.

Using the Model Wizard, if you first create a Blank Model and then add a
component using the Model Builder, you will be prompted to choose the
space dimension of the component. This operation will, in addition to
creating a component, also create a geometry and mesh node. For
example, selecting a 2D component corresponds to the following lines of
code:
model.modelNode().create("comp1");
model.geom().create("geom1", 2);
model.mesh().create("mesh1", "geom1");
 | 25

Get and Set Methods for Accessing Properties

The get and set methods are used to access and assign, respectively, property
values in the different parts of the model object. To assign individual elements of
a vector or matrix, the setIndex method is used. The property values can be of
the basic data types: String, int, double, and boolean, as well as vectors or
matrices of these types (1D or 2D arrays).
The get, set, and create methods (described in the previous section) are also
accessible from the model tree by right-clicking and selecting Copy as Code to
Clipboard.

THE GET METHODS

The family of get methods is used to retrieve the values of properties. For
example, the getDouble method can be used to retrieve the value of the
predefined element size property hauto for a mesh and store it in a variable hv:

double hv = model.mesh("mesh1").feature("size").getDouble("hauto")

See the section “Example Code” on page 29 below for more information on the
property hauto.
The syntax for the family of get methods for the basic data types is summarized in
the following table:

TYPE SYNTAX

String getString(String name)

String array getStringArray(String name)

String matrix getStringMatrix(String name)

Integer getInt(String name)

Integer array getIntArray(String name)

Integer matrix getIntMatrix(String name)
26 |

All arrays are returned as copies of the data; writing to a retrieved array does not
change the data in the model object. To change the contents of an array in the
model object, use one of the methods set or setIndex.
Automatic type conversion is attempted from the property type to the requested
return type.

THE SET METHOD

The syntax for assignment using the set method is exemplified by this line of
code, which sets the title of a plot group pg1:

model.result("pg1").set("title", "Temperature T in Kelvin");

The first argument is a string with the name of the property, in the above example
"title". The second argument is the value and can be a basic type as indicated by
the table below.

Double getDouble(String name)

Double array getDoubleArray(String name)

Double matrix getDoubleMatrix(String name)

Boolean getBoolean(String name)

Boolean array getBooleanArray(String name)

Boolean matrix getBooleanMatrix(String name)

TYPE SYNTAX

String set(String name,String val1)

String array set(String name,new String[]{"val1","val2"})

String matrix set(String name,new String[][]{{"1","2"},{"3","4"}})

Integer set(String name,17)

Integer array set(String name,new int[]{1,2})

Integer matrix set(String name,new int[][]{{1,2},{3,4}})

Double set(String name,1.3)

Double array set(String name,new double[]{1.3,2.3})

Double matrix set(String name,new double[][]{{1.3,2.3},{3.3,4.3}})

Boolean set(String name,true)

Boolean array set(String name,new boolean[]{true,false})

Boolean matrix set(String name,new boolean[][]{{true, false},{false, false}})

TYPE SYNTAX
 | 27

Using the set method for an object returns the object itself. This allows you to
append multiple calls to set as follows:

model.result("pg1").set("edgecolor", "black").set("edges", "on");

The previous line of code assigns values to both the edgecolor and edges
properties of the plot group pg1 and is equivalent to the two lines:

model.result("pg1").set("edgecolor", "black");
model.result("pg1").set("edges", "on");

In this case, the set method returns a plot group object.
Automatic type conversion is attempted from the input value type to the property
type. For example, consider a model parameter a that is just a decimal number
with no unit. Its value can be set with the statement:

model.param().set("a", "7.54");

where the value "7" is a string. In this case, the following syntax is also valid:
model.param().set("a",7.54);

THE SETINDEX METHOD

The setIndex method is used to assign a value to a 1D or 2D array element at a
position given by one or two indices (starting from index 0).
The following line illustrates using setIndex with one index:

model.physics("c").feature("cfeq1").setIndex("f", "2.5", 0);

The following line illustrates using setIndex with two indices:
model.physics("c").feature("cfeq1").setIndex("c", "-0.1", 0, 1);

For the setIndex method in general, use one of these alternatives to set the value
of a single element:

setIndex(String name,String value,int index);
setIndex(String name,String value,int index1,int index2);

The name argument is a string with the name of the property. The value argument
is a string representation of the value. The indices start at 0, for example:

setIndex(name,value,2)

sets the third element of the property name to value.
The setIndex method returns an object of the same type, which means that
setIndex methods can be appended just like the set method.
If the index points beyond the current size of the array, then the array is extended
as needed before the element at index is set. The values of any newly created
intermediate elements are undefined.
The method setIndex and set can both be used to assign values in ragged arrays.
For example, consider a ragged array with 2 rows. The code statements:
28 |

setIndex(name,{"1","2","3"},0);
setIndex(name,{"4","5"},1);

sets the first and second row of the array and are equivalent to the single statement:
set("name",new String[][]{{"1","2","3"},{"4","5"}});

METHODS ASSOCIATED WITH SET AND GET METHODS

For object types for which the set, setIndex, and get methods can be used, the
following additional methods are available:

String[] properties();

returns the names of all available properties,
boolean hasProperty(String name);

returns true if the feature has the named property,
String[] getAllowedPropertyValues(String name);

returns the allowed values for named properties, if it is a finite set.

EXAMPLE CODE

The following code block can be used to warn an application’s user of excessive
simulation times based on the element size:

if (model.mesh("mesh1").feature("size").getDouble("hauto")<=3) {
exp_time = "Solution times may be more than 10 minutes for finer element
sizes.";

}

In the above example, getDouble is used to retrieve the value of the property
hauto, which corresponds to the Element Size parameter Predefined in the Settings
window of the Size node under the Mesh node. This setting is available when the
Sequence type is set to User-controlled mesh, in the Settings window of the Mesh
node.
The following line of code retrieves an array of strings corresponding to the
legends of a 1D point graph.

String[] legends =
model.results("pg3").feature("ptgr1").getStringArray("legends");
 | 29

The figure below shows an example of a vector of legends in the Settings window
of the corresponding Point Graph.

The following line of code sets the Data Set dset1 for the Plot Group pg1:
model.result("pg1").set("data", "dset1");

The following lines of code set the anisotropic diffusion coefficient for a Poisson’s
equation problem on a block geometry.

model.geom("geom1").create("blk1", "Block");
with(model.geom("geom1").feature("blk1"));
 set("size", new String[]{"10", "1", "1"});
endwith();
model.geom("geom1").run();
with(model.physics("c").feature("cfeq1"));
 setIndex("c", "-0.1", 0, 1);
 setIndex("c", "-0.2", 0, 6);
 setIndex("f", "2.5", 0);
endwith();

The code below sets the global parameter L to a fixed value.
with(model.param());

set("L", "10[cm]");
endwith();

The code below sets the material link index to the string variable alloy, defined
under the Declarations node.

with(model.material("matlnk1"));
 set("link", alloy);
endwith();

The code below sets the coordinates of a cut point data set cpt1 to the values of
the 1D array samplecoords[].

with(model.result().dataset("cpt1"));
 set("pointx", samplecoords[0]);
 set("pointy", samplecoords[1]);
 set("pointz", samplecoords[2]);
endwith();

The code below sets the components of a deformation plot.
30 |

with(model.result("pg7").feature("surf1").feature("def"));
 setIndex("expr", withstru, 0);
 setIndex("expr", withstrv, 1);
 setIndex("expr", withstrw, 2);
endwith();

The code below sets the title and color legend of a plot group pg2 and then
regenerates the plot.

with(model.result("pg2"));
set("titletype", "auto");

endwith();
with(model.result("pg2").feature("surf1"));

set("colorlegend", "on");
endwith();
model.result("pg2").run();

Parameters and Variables

This code defines a global parameter L with Expression 0.5[m] and Description
Length:

model.param().set("L", "0.5[m]");
model.param().descr("L", "Length");

There is an alternative syntax using three input arguments:
model.param().set("L", "0.5[m]", "Length");

You can also use the with syntax to set the Expression and Description for several
parameters, for example:

with(model.param());
 set("L", "0.5[m]");
 descr("L", "Length");
 set("wd", "10[cm]");
 descr("wd", "Width");
 set("T0", "500[K]");
 descr("T0", "Temperature");
endwith();
 | 31

which corresponds to the following Settings window for Global
Definitions>Parameters:

ACCESSING A GLOBAL PARAMETER

You would typically use the Editor Tools window for generating code for setting
the value of a global parameter. While in the Method editor, right-click the
parameter and select Set.
To set the value of the global parameter L to 10 cm:

model.param().set("L", "10[cm]");

To get the global parameter L and store it in a double variable Length:
double Length=model.param().evaluate("L");

The evaluation is in this case with respect to the base Unit System defined in the
model tree root node.
To return the unit of the parameter L, if any, use:

String Lunit=model.param().evaluateUnit("L");

To write the value of a model expression to a global parameter, you typically need
to convert it to a string. The reason is that model expressions may contain units.
Multiply the value of the variable Length with 2 and write the result to the
parameter L including the unit of cm.

Length=2*Length;
model.param().set("L", toString(Length)+"[cm]");

To return the value of a parameter in a different unit than the base Unit System,
use:

double Length_real = model.param().evaluate("L","cm");

For the case where the parameter is complex valued, the real and imaginary parts
can be returned as a double vector of length 2:

double[] realImag = model.param().evaluateComplex("Ex","V/m");

For parameters that are numbers without units, you can use a version of the set
method that accepts a double instead of a string. For example, the lines
32 |

double a_double=7.65;
model.param().set(“a_param”,a_double);

assigns the value 7.65 to the parameter a_param.

VARIABLES

The syntax for accessing and assigning variables is similar to that of parameters.
For example, the code:

with(model.variable("var1"));
 set("F", "150[N]");
 descr("F", "Force");
endwith();

assigns the Expression 150[N] to the variable with Name F.
The following code assigns a model expression to the variable f:

with(model.variable("var1"));
 set("f", "(1-alpha)^2/(alpha^3+epsilon)+1");
endwith();

and the following code stores the model expression for the same variable in a string
fs.

String fs = model.variable("var1").get("f");

Unary and Binary Operators in the Model Object

The table below describes the unary and binary operators that can be used when
accessing a model object, such as the model expressions used when defining
parameters, variables, material properties, and boundary conditions, as well as in
expressions used in results for postprocessing and visualization.

PRECEDENCE LEVEL SYMBOL DESCRIPTION

1 () {} . grouping, lists, scope

2 ^ power

3 ! - + unary: logical not, minus, plus

4 [] unit

5 * / binary: multiplication, division

6 + - binary: addition, subtraction

7 < <= > >= comparisons: less-than, less-than or equal,
greater-than, greater-than or equal
 | 33

The following example code creates a variable to indicate whether the effective von
Mises stress exceeds 200 MPa by using the inequality solid.mises>200[MPa]:

model.variable().create("var1");
model.variable("var1").model("comp1");
model.variable("var1").set("hi_stress", "solid.mises>200[MPa]");

The following code demonstrates using this variable in a surface plot:
model.result().create("pg3", "PlotGroup3D");
model.result("pg3").create("surf1", "Surface");
with(model.result("pg3").feature("surf1"));
 set("expr", "hi_stress");
endwith();
model.result("pg3").run();

The same plot can be created by directly using the inequality expression in the
surface plot expression as follows:

with(model.result("pg3").feature("surf1"));
 set("expr", "solid.mises>200[MPa]");
endwith();
model.result("pg3").run();

Geometry

Once the Geometry node is created (see “Creating Model Components and Model
Object Nodes” on page 25) you can add geometric features to the node. For
example, add a square using default position (0, 0) and default size 1:

model.geom("geom1").create("sq1", "Square");

The first input argument "sq1" to the create method is a tag, a handle, to the
square. The second argument "Square" is the type of geometry object.
Add another square with a different position and size:

model.geom("geom1").create("sq2", "Square");
with(model.geom("geom1").feature("sq2"));

set("pos", new String[]{"0.5", "0.5"});
set("size", "0.9");

endwith();

The with statement in the above example is used to make the code more compact
and, without using with, the code statements above are equivalent to:

8 == != comparisons: equal, not equal

9 && logical and

10 || logical or

11 , element separator in lists

PRECEDENCE LEVEL SYMBOL DESCRIPTION
34 |

model.geom("geom1").feature("sq2").set("pos", new String[]{"0.5", "0.5"});
model.geom("geom1").feature("sq2").set("size", "0.9");

Take the set difference between the first and second square:
model.geom("geom1").create("dif1", "Difference");
with(model.geom("geom1").feature("dif1").selection("input"));
 set(new String[]{"sq1"});
endwith();
with(model.geom("geom1").feature("dif1").selection("input2"));
 set(new String[]{"sq2"});
endwith();

To build the entire geometry, you call the method run for the Geometry node:
model.geom("geom1").run();

The above example corresponds to the following Geometry node settings:

In this way, you have access to the functionality that is available in the geometry
node of the model tree. Use Record Code or any of the other tools for automatic
generation of code to learn more about the syntax and methods for other
geometry operations.

REMOVING MODEL TREE NODES

You can remove geometry objects using the remove method:
model.geom("geom1").feature().remove("sq2");

Remove a series of geometry objects (circles) with tags c1, c2, ..., c10:
for(int n=1;n<=10;n=n+1) {
 model.geom("geom1").feature().remove("c"+n);
}

The syntax "c"+n automatically converts the integer n to a string before
concatenating it to the string "c".
To remove all geometry objects:

for(String tag : model.geom("geom1").feature().tags()) {
 model.geom("geom1").feature().remove(tag);
 }

However, the same can be achieved with the shorter:
model.geom("geom1").feature().clear();

In a similar way, you can remove other model tree nodes.
 | 35

Mesh

The following line adds a Mesh node, with tag mesh1, linked to the geometry with
tag geom1:

model.mesh().create("mesh1", "geom1");

You can control the mesh element size either by a preconfigured set of sizes or by
giving low-level input arguments to the meshing algorithm.
The following line:

model.mesh("mesh1").autoMeshSize(6);

corresponds to a mesh with Element size set to Coarse. The argument to the
method autoMeshSize ranges from 1-9, where 1 is Extremely fine and 9 is
Extremely coarse.
To generate the mesh, you call the run method for the mesh node:

model.mesh("mesh1").run();

Use Record Code to generate code for other mesh operations.
The code below shows an example where the global mesh parameters have been
changed.

model.mesh("mesh1").automatic(false); // Turn off Physics-controlled mesh
with(model.mesh("mesh1").feature("size"));

set("custom", "on"); // Use custom element size
set("hmax", "0.09"); // Maximum element size
set("hmin", "3.0E-3"); // Minimum element size
set("hgrad", "1.2"); // Maximum element growth rate
set("hcurve", "0.35"); // Curvature factor
set("hnarrow", "1.5"); // Resolution of narrow regions

endwith();
model.mesh("mesh1").run();
36 |

The above example corresponds to the following Mesh node settings:

Note that you can also set local element size properties for individual points,
edges, faces, and domains. Use Record Code or any of the other tools for automatic
generation of code to learn more about the syntax and methods for other mesh
operations.

Physics

Consider analyzing stationary heat transfer in the solid rectangular geometry
shown earlier. To create a physics interface, for Heat Transfer in Solids, use:

model.physics().create("ht", "HeatTransfer", "geom1");

The first input argument to the create method is a physics interface tag that is
used as a handle to this physics interface. The second input argument is the type
of physics interface. The third input argument is the tag of the geometry to which
the physics interface is assigned.
To set a fixed temperature boundary condition on a boundary, you first create a
TemperatureBoundary feature using the following syntax:
 | 37

model.physics("ht").create("temp1", "TemperatureBoundary", 1);

The first input argument to create is a feature tag that is used as a handle to this
boundary condition. The second input argument is the type of boundary
condition. The third input argument is the spatial dimension for the geometric
entity that this boundary condition should be assigned to. Building on the
previous example of creating a 2D rectangle, the input argument being 1 means
that the dimension of this boundary is 1 (that is, an edge boundary in 2D).
The next step is to define which selection of boundaries this boundary condition
should be assigned to. To assign it to boundary 1 use:

model.physics("ht").feature("temp1").selection().set(new int[]{1});

To assign it to multiple boundaries, for example 1 and 3, use:
model.physics("ht").feature("temp1").selection().set(new int[]{1,3});

To set the temperature on the boundary to a fixed value of 400 K, use:
model.physics("ht").feature("temp1").set("T0", "400[K]");

The following lines of code show how to define a second boundary condition for
a spatially varying temperature, varying linearly with the coordinate y:

model.physics("ht").create("temp2", "TemperatureBoundary", 1);
model.physics("ht").feature("temp2").selection().set(new int[]{4});
model.physics("ht").feature("temp2").set("T0", "(300+10[1/m]*y)[K]");

The resulting model tree structure is shown in the figure below.

Use Record Code or any of the other tools for automatic generation of code to learn
more about the syntax and methods for other physics interface features and other
physics interfaces.

CREATING AND REMOVING MODEL TREE NODES

Below is a larger block of code that removes, creates, and accesses physics interface
feature nodes. It uses the Iterator class and methods available in the java.util
package. For more information, see the Java® documentation.

String[] flowrate = column1;
String[] Mw = column2;
java.util.Iterator<PhysicsFeature> iterator =
model.physics("pfl").feature().iterator();
while (iterator.hasNext()) {
 if (iterator.next().getType().equals("Inlet"))
38 |

 iterator.remove();
}
if (flowrate != null) {
 for (int i = 0; i < flowrate.length; i++) {
 if (flowrate[i].length() > 0) {
 if (Mw[i].length() > 0) {
 int d = 1+i;
 model.physics("pfl").create("inl"+d, "Inlet");
 model.physics("pfl").feature("inl"+d).setIndex("spec", "3", 0);
 model.physics("pfl").feature("inl"+d).set("qsccm0", flowrate[i]);
 model.physics("pfl").feature("inl"+d).set("Mn", Mw[i]);
 model.physics("pfl").feature("inl"+d).selection().set(new int[]{d});
 }
 }
 }
}

The need to remove and create model tree nodes is fundamental when writing
methods because the state of the model object is changing each time a model tree
node is run. In the method above, the number of physics feature nodes are
dynamically changing depending on user inputs. Each time the simulation is run,
old nodes are removed first and then new nodes are added.

Material

A material, represented in the Model Builder by a Materials node, is a collection of
property groups, where each property group defines a set of material properties,
material functions, and model inputs that can be used to define, for example, a
temperature-dependent material property. A property group usually defines
properties used by a particular material model to compute a fundamental quantity.
To create a Materials node:

model.material().create("mat1", "Common", "comp1");

You can give the material a name, for example, Aluminum, as follows:
model.material("mat1").label("Aluminum");

The following lines of code shows how to create a basic material property group
for heat transfer:

with(model.material("mat1").propertyGroup("def"));
set("thermalconductivity", new String[]{"238[W/(m*K)]"});
set("density", new String[]{"2700[kg/m^3]"});
set("heatcapacity", new String[]{"900[J/(kg*K)]"});

endwith();
 | 39

The built-in property groups have a read-only tag. In the above example, the tag
def represents the property group Basic in the model tree.

The resulting model tree and Material node settings are shown in the figure below.

Note that some physics interfaces do not require a material to be defined. Instead,
the corresponding properties can be accessed directly in the physics interface. This
is also the case if the physics model settings are changed from From material to User
defined. For example, for the Heat Transfer in Solids interface, this setting can be
40 |

found in the Settings window of the subnode Solid, in the sections Heat Conduction,
Solid and Thermodynamics, Solid, as shown in the figure below.

Use Record Code or any of the other tools for automatic generation of code to learn
more about the syntax and methods for materials.

Study

The Study node in the model tree contains one or more study steps, instructions
that are used to set up solvers and solve for the dependent variables. The settings
for the Study and the Solver Configurations nodes can be quite complicated.
Consider the simplest case for which you just need to create a study, add a study
step, and run it.
Building on the example from the previous sections regarding stationary heat
transfer, let’s add a Stationary study step.

model.study().create("std1"); // Study with tag std1
model.study("std1").create("stat", "Stationary");
model.study("std1").run();

The call to the method run automatically generates a solver sequence in a data
structure model.sol and then runs the corresponding solver. The settings for the
solver are automatically configured by the combination of physics interfaces you
have chosen. You can manually change these settings, as shown later in this
section. The data structure model.sol roughly corresponds to the contents of the
Solver Configurations node under the Study node in the model tree.
All low-level solver settings are available in model.sol. The structure
model.study is used as a high-level instruction indicating which settings should
be created in model.sol when a new solver sequence is created.
 | 41

For backward compatibility, some of the low-level settings in model.sol are
automatically generated when using Record Code.
The example below shows a somewhat more elaborate case of programing the
study that would be applicable for the stationary heat transfer example shown
earlier. The instructions below more closely resemble the output autogenerated by
using the Record Code option.
First create instances of the Study node (with tag std1) and a Stationary study step
subnode:

model.study().create("std1");
model.study("std1").create("stat", "Stationary");

The actual settings that determine how the study is run are contained in a
sequence of operations in the Solution data structure, with tag sol1, which is
linked to the study:

model.sol().create("sol1");
model.sol("sol1").study("std1");

The following code defines the sequence of operations contained in sol1.
First, create a Compile Equations node under the Solution node to determine which
study and study step will be used:

model.sol("sol1").create("st1", "StudyStep");
model.sol("sol1").feature("st1").set("study", "std1");
model.sol("sol1").feature("st1").set("studystep", "stat");

Next, create a Dependent Variables node, which controls the scaling and initial
values of the dependent variables and determines how to handle variables that are
not solved for:

model.sol("sol1").create("v1", "Variables");

Now create a Stationary Solver node. The Stationary Solver contains the
instructions that are used to solve the system of equations and compute the values
of the dependent variables.

model.sol("sol1").create("s1", "Stationary");

Add subnodes to the Stationary Solver node to choose specific solver types. In this
example, use an Iterative solver:

model.sol("sol1").feature("s1").create("i1", "Iterative");

Add a Multigrid preconditioner subnode:
model.sol("sol1").feature("s1").feature("i1").create("mg1", "Multigrid");

You can have multiple Solution data structures in a study node (such as sol1, sol2,
and so on) defining different sequences of operations. The process of notifying the
study of which one to use is done by “attaching” the Solution data structure sol1
with study std1:

model.sol("sol1").attach("std1");
42 |

The attachment step determines which Solution data structure sequence of
operations should be run when selecting Compute in the COMSOL Desktop user
interface.
Finally, run the study, which is equivalent to running the Solution data structure
sol1:

model.sol("sol1").runAll();

The resulting Study node structure is shown in the figure below. Note that there
are several additional nodes added automatically. These are default nodes and you
can edit each of these nodes by explicit method calls. You can edit any of the nodes
while using Record Code to see the corresponding methods and syntax used.

MODIFYING LOW-LEVEL SOLVER SETTINGS

To illustrate how some of the low-level solver settings can be modified, consider
a case where the settings for the Fully Coupled node are modified. This subnode
controls the type of nonlinear solver used.
 | 43

The first line below may not be needed depending on whether the Fully Coupled
subnode has already been generated or not (it could have been automatically
generated by code similar to what was shown above).

model.sol("sol1").feature("s1").create("fc1", "FullyCoupled");
with(model.sol("sol1").feature("s1").feature("fc1"));

set("dtech", "auto"); // The Nonlinear method (Newton solver)
set("initstep", "0.01"); // Initial damping factor
set("minstep", "1.0E-6"); // Minimum damping factor
set("rstep", "10"); // Restriction for step-sized update
set("useminsteprecovery", "auto"); // Use recovery damping factor
set("minsteprecovery", "0.75"); // Recovery damping factor
set("ntermauto", "tol"); // Termination technique
set("maxiter", "50"); // Maximum number of iterations
set("ntolfact", "1"); // Tolerance factor
set("termonres", "auto"); // Termination criterion
set("reserrfact", "1000"); // Residual factor

endwith();

For more information on the meaning of these and other low-level solver settings,
see the Solver section of the Programming Reference Manual.
Changing the low-level solver settings requires that model.sol has first been
created. It is always created the first time you compute a study, however, you can
trigger the automatic generation of model.sol as follows:

model.study().create("std1");
model.study("std1").create("stat", "Stationary");
model.study("std1").showAutoSequences("sol");

where the call to showAutoSequences corresponds to the option Show Default
Solver, which is available when right-clicking the Study node in the model tree.
This can be used if you do not want to take manual control over the settings in
model.sol (the solver sequence) and are prepared to rely on the physics interfaces
to generate the solver settings. If your application makes use of the automatically
generated solver settings, then updates and improvements to the solvers in future
versions are automatically included. Alternatively, the automatically generated
model.sol can be useful as a starting point for your own edits to the low-level
solver settings.

CHECKING IF A SOLUTION EXISTS

When creating an application it is often useful to keep track of whether a solution
exists or not. The method model.sol("sol1").isEmpty() returns a boolean and
is true if the solution structure sol1 is empty. Consider an application where the
solution state is stored in a string solution_state. The following code sets the
state depending on the output from the isEmpty method:

if (model.sol("sol1").isEmpty()) {
solution_state = "nosolution";

}

44 |

else {
solution_state = "solutionexists";

}

Almost all of the example applications in the Application Libraries use this
technique.

Results

The Results node contains nodes for Data Sets, Derived Values, Tables, Plot Groups,
Export, and Reports. As soon as a solution is obtained, a set of Plot Group nodes
are automatically created. In the example of Heat Transfer in Solids, when setting
up such an analysis in the Model Builder, two Plot Group nodes are added
automatically. The first one is a Surface plot of the Temperature and the second one
is a Contour plot showing the isothermal contours. Below you will see how to set
up the corresponding plots manually.
First create a 2D plot group with tag pg1:

model.result().create("pg1", "PlotGroup2D");

Change the Label of the Plot Group:
model.result("pg1").label("Temperature (ht)");

Use the data set dset1 for the Plot Group:
model.result("pg1").set("data", "dset1");

Create a Surface plot for pg1 with settings for the color table used, the
intra-element interpolation scheme, and the Data Set referring to the parent of the
Surface plot node, which is the pg1 node:

model.result("pg1").feature().create("surf1", "Surface");
model.result("pg1").feature("surf1").label("Surface");
with(model.result("pg1").feature("surf1"));

set("colortable", "ThermalLight");
set("smooth", "internal");
set("data", "parent");

endwith();
Now create a second 2D plot group with contours for the isotherms:

model.result().create("pg2", "PlotGroup2D");
model.result("pg2").label("Isothermal Contours (ht)");
with(model.result("pg2"));
 set("data", "dset1");
endwith();
model.result("pg2").feature().create("con1", "Contour");
model.result("pg2").feature("con1").label("Contour");
with(model.result("pg2").feature("con1"));

set("colortable", "ThermalLight");
set("smooth", "internal");
 | 45

set("data", "parent");
endwith();

Finally, generate the plot for the Plot Group pg1:
model.result("pg1").run();

To find the maximum temperature, add a Surface Maximum subnode to the Derived
Values node as follows:
First create the Surface Maximum node with tag max1:

model.result().numerical().create("max1", "MaxSurface");

Note that in this context the method corresponding to the Derived Values node is
called numerical.
Next, specify the selection. In this case there is only one domain 1:

model.result().numerical("max1").selection().set(new int[]{1});

Create a Table node to hold the numerical result and write the output from max1
to the Table:

model.result().table().create("tbl1", "Table");
model.result().table("tbl1").comments("Surface Maximum 1 {max1} (T)");
model.result().numerical("max1").set("table", "tbl1");
model.result().numerical("max1").setResult();

Use Record Code or any of the other tools for automatic generation of code to learn
more about the syntax and methods for Results.

Using Parameterized Solutions in Results
The code below changes the visualization of a plot group pg1 by setting the
property looplevel, which controls the solution parameter, to the string variable
svar.

with(model.result("pg1"));
 set("looplevel", new String[]{svar});
endwith();
model.result("pg1").run();

The property looplevel has a central role in accessing parameterized solutions.
Its argument is a 1D string array with one index per "loop level" in a study. The
different loop levels correspond to the different nested parameters in a parametric
sweep with multiple parameters.

Loading Data to Tables
By using the loadFile method you can import data into a table and then display
it using a results table form object or a table surface plot. The following example
demonstrates loading data from an Excel file into a table and visualizing the
contents using a table surface plot. The file in this example is assumed to be
imported, in an application, using a file import form object with a file declaration
file1 as the File Destination.
46 |

model.result().table("tbl1").loadFile("upload:///file1", "", cells);
/*

The string variable cells contains the spreadsheet selection to be
imported, for example A1:J7.

The following code creates a plot group pg1 with a table surface plot.
This code is not needed if the embedded model already contains a table
and a table surface plot.

*/

model.result().create("pg1", 2);
model.result("pg1").create("tbls1", "TableSurface");
with(model.result("pg1").feature("tbls1"));
 set("table", "tbl1");
endwith();
with(model.result("pg1").feature("tbls1"));
 set("dataformat", "cells");
endwith();
model.result("pg1").feature("tbls1").create("hght1", "TableHeight");
with(model.result("pg1").feature("tbls1").feature("hght1"));
 set("view", "view3");
endwith();
with(model.view("view3").camera());
 set("viewscaletype", "manual");
 set("xscale", "1");
 set("yscale", "1");
 set("zscale", "1");
endwith();
// The following line is needed to update the plot
model.result("pg1").run();

Multiphysics

Some of the physics interfaces define a multiphysics analysis by themselves without
being coupled to any other interface. This is the case when the physics interface is
used for a coupling that is so strong that it doesn’t easily lend itself to be separated
into several physics interfaces. In other cases, a set of single physics interfaces,
typically two, can be combined by the use of the Multiphysics node. For example,
a Joule Heating analysis is defined as the combination of an Electric Currents
interface and a Heat Transfer in Solids interface with an additional Electromagnetic
Heat Source node under the Multiphysics node. The following lines of code
illustrate the corresponding method calls.

model.physics().create("ec", "ConductiveMedia", "geom1");
model.physics().create("ht", "HeatTransfer", "geom1");
model.multiphysics().create("emh1", "ElectromagneticHeatSource", "geom1",
2);
model.multiphysics("emh1").selection().all();
with(model.multiphysics("emh1"));
 | 47

 set("EMHeat_physics", "ec");
 set("Heat_physics", "ht");
endwith();

When using the Model Builder to set up a Joule Heating analysis, nodes in addition
to those shown above will be created corresponding to Joule heating in thin shells,
should they exist in the model, and temperature couplings if there are multiple
field variables for electric potential and temperature.

Working with Model Objects

When using the Model Builder in the COMSOL Desktop, an embedded model
with variable name model is automatically created. The embedded model has a
special status. For example, the automatic code generation tools only consider the
embedded model. In addition, when you save to or load from an MPH file, only
the embedded model is saved or loaded. General tools include the Save Application
As command in the Application Builder and File > Save As, from the File menu of
the COMSOL Desktop environment.
However, in an application you are allowed to create and edit multiple models.
Saving and loading such models is done by using the built-in methods saveModel
and loadModel. An MPH file can only contain a single model object.
If you need to create model objects, in addition to the embedded model, use the
built-in method createModel.
To create a new model you use:

Model model = createModel("My_model_1");

where My_model_1 is a unique tag. It is recommended that you do not use the
names Model1, Model2, Model3, and so on, since these names are used by the
mechanism that automatically generates model tags for the embedded model
when loading and saving MPH files.
The following example retrieves the model tag of the embedded model:

String my_modeltag = model.tag();

however, you rarely need to use the model tag of the embedded model object.
Instead of creating and building up the contents of a model from scratch, you can
load an existing model and edit it.
For example in the Windows operating system, load a model my_model.mph from
the folder C:\COMSOL_Work, by using the built-in method loadModel:

Model extmodel = loadModel("My_Model_1", "C:\\COMSOL_Work\\my_model.mph");

The model tag My_Model_1 is chosen arbitrarily by you and is assigned to the
model upon load. You just need to ensure that the model tag doesn’t collide with
48 |

the tag of the embedded model, or with any other tag associated with a loaded
model. Note the double-backslash syntax in the file name. Backslash (\) is a special
character in Java and the double backslash is needed in this case.
To make your application portable, you can use the file scheme syntax available in
the Application Builder. Assuming you stored the MPH file in the common folder,
the call to loadModel should be:

Model extmodel = loadModel("My_Model_1", "common:///my_model.mph");

In this example, the tag My_Model_1 is important since it is used to retrieve the
model from other methods. Once loaded, the model extmodel exists in the work
space of the current COMSOL Multiphysics or COMSOL Server session. Note
that an MPH file can only contain one model object, so there is no ambiguity on
which model you refer to when loading an MPH file.
Assume that you, in one method, have loaded the model extmodel with the tag
My_Model_1, such as in the example above. The model variable extmodel is not
available in other methods. In order to retrieve the model from another method
use:

Model mymodel = getModel("MyModel_1");

The contents of mymodel and extmodel are the same, but these variables exist in
the variable space of two different methods.
The tag My_Model_1 uniquely identified and retrieved the model object from the
current COMSOL Multiphysics or COMSOL Server session.
For a list of model utility methods, see “Model Utility Methods” on page 82.

The Model Object Class Structure

For a full description of the class structure and method signatures, see the HTML
document Java Documentation available in the COMSOL Help Desk. For a
Windows installation in the default location, the document is located at:

C:/Program Files/COMSOL/COMSOL52a/Multiphysics/doc/html/comsol/helpdesk.html
 | 49

The figure below shows the document as displayed in a browser.
50 |

The Application Object

The application object is a part of the model object and is the data structure that
allows access to the user interface features of an application from within a method.
The state of the application object is reflected in the COMSOL Desktop user
interface by the contents of the Application Builder and its application tree.
You can write code using the Method editor to directly access and change the
features presented in a running application, including button text, icons, colors,
and fonts.
The application object gives you access to a subset of the features and settings
available in the Application Builder. You can use the application object methods
for run time modifications to the user interface, but not for building a complete
user interface. For building the user interface of an application, you need to use
the Form editor as described in the book Introduction to Application Builder.

Shortcuts

Form objects and other user interface components are referenced in methods by
using a certain syntax. For example, using the default naming scheme
form3/button5 refers to a button with name button5 in form3 and
form2/graphics3 refers to a graphics object with name graphics3 in form2. You
can also change the default names of forms and form objects. For example, if
form1 is your main form then you can change its name to main.
To simplify referencing form objects as well as menu, ribbon, and toolbar items by
name, you can create shortcuts with a custom name. In the Settings window of an
object or item, click the button to the right of the Name field and type the name
of your choice.

To create or edit a shortcut, you can also use the keyboard shortcut Ctrl+K.
 | 51

All shortcuts that you create are made available in a Shortcuts node under
Declarations in the application tree.

In the Settings window for Shortcuts shown below, two shortcuts plot_temp and
temp_vis were created for a button and a graphics object, respectively.

The shortcuts can be referenced in other form objects or in code in the Method
editor. The example below shows a shortcut temp_vis used as an input argument
to a temperature plot.

Shortcuts are automatically updated when objects are renamed, moved, copied,
and duplicated. They are available in application methods as read-only Java®
variables, similar to string, integer, double, and Boolean declarations.
Using shortcuts is recommended because it avoids the need to update methods
when the structure of the application user interface changes.
52 |

EXAMPLE CODE

If the application contains a button named button1 in a form named form1, and
the button has a shortcut named b1, the following two ways to change the button
text to red are equivalent:

b1.set("foreground", "red");
app.form("form1").formObject("button1").set("foreground", "red");

Accessing the Application Object

In the Method editor you can directly access the application object part of the
model object by using the app variable. This variable is a shorthand for
model.app().

The Name of User Interface Components

Access the various parts of the application object by using the name of a form
object, form, item, etc. A name in the application object has the same function as
the tag in the model object omitting the model.app part.
For example, in the line of code

app.form("form1").formObject("button1").set("enabled", false);

the string form1 is the name of a form and button1 is the name of a button.

Important Classes

THE MAIN APPLICATION CLASS

When working with an application object, the main application class is AppModel,
which is the type of model.app().

DECLARATION CLASSES

In addition to the basic data types and shortcut declarations, the Declaration node
may include Choice List and Unit List declarations. The corresponding classes are
ChoiceList and UnitSet. The parent class to ChoiceList and UnitSet is called
DataSource. For more information, see “Data Source: Choice List and Unit Set”
on page 78.
 | 53

MAIN USER INTERFACE COMPONENT CLASSES

In an application object, the main user interface components correspond to the
following classes:
• MainWindow

- The class representing the Main Window node in the application tree.
• Form

- The class representing a form.
• FormObject

- The class representing a form object.
• Item

- The class representing, for example, a menu, toolbar, or ribbon item.
Each class has a set of associated methods that are used to edit the corresponding
user interface component at run time. These are described in the following
sections.
In addition to the main user interface component classes, there are also list
versions of the Form, FormObject, and Item classes. These are: FormList,
FormObjectList, and ItemList.

Get and Set Methods for Color

The get and set methods described in the section “Get and Set Methods for
Accessing Properties” on page 26 are applicable to the model object as well as the
model.app part of the model object. In addition, the following methods are
available for changing the color of a user interface component:

Not all methods are applicable to all properties. Use Ctrl+Space to use code
completion to find out what methods are applicable for a certain object, and what
property names and property values are applicable for a certain method.

NAME SYNTAX DESCRIPTION

setColor setColor(String prop, int r, int g, int b) Set a color property using
red, green, and blue values.

getColor int[] getColor(String prop) Get the value of a color
property as an array of red,
green, and blue values.
54 |

General Properties

The following table lists properties that are available for several different user
interface components, including form objects. In the table below, a user interface
component is referred to as an object.

A foreground or background color property is represented by a string value. The
available colors are: black, blue, cyan, gray, green, magenta, red, white, and
yellow, or a custom color may also be defined. The special value default means
that the color is taken from the parent object. Depending on the parent type, this
could mean that default is Inherit or Transparent, referring to the corresponding
setting in the Settings window in the Form editor. An arbitrary RGB color can be
represented by a string of the form rgb(red,green,blue) where red, green, and
blue are integers between 0 and 255. Color properties can also be manipulated

PROPERTY VALUE DEFAULT DESCRIPTION

visible true | false true If the value is true, the corresponding
object is visible in the user interface.

enabled true | false true If the value is true, the
corresponding object is enabled in
the user interface, which means that
the user can interact with the object.

background String default The background color for the
corresponding user interface element.

foreground String default The foreground color for the
corresponding user interface element.

font String default The font family name. The special
value default means that the font to
use is determined by the parent
object, which is the corresponding
setting in the Settings window of the
Forms node.

fontbold true | false false If true the font uses boldface style.

fontitalic true | false false If true the font uses italic style.

fontunderline true | false false If true the font uses underline style.

fontsize String -1 The font size in points. The special
value -1 represents the default size,
which means that the size is taken
from the parent object (the Forms
node) or from the system default size
if no parent object defines the size.
 | 55

N

m

f

f

d

using the getColor and setColor methods to directly access the red, green, and
blue color components. If a color property has the value default, it does not have
red, green, and blue values. In this case, the getColor method returns the array
[0,0,0].

EXAMPLE CODE

The following example reads the current background color for a form, makes the
color darker, and applies the modified color to the same form.

int[] rgb = app.form("form1").getColor("background");
for (int i = 0; i < 3; i++)
 rgb[i] /= 2;
app.form("form1").setColor("background", rgb[0], rgb[1], rgb[2]);

The following line of code sets the background color to black:
app.form("form1").set("background", "black");

The following line of code sets the background color to default which in the case
of the background color property corresponds to the Form editor setting
Transparent.

app.form("form1").set("background", "default");

The following line of code sets the background color to the RGB values 125, 45,
and 43.

app.form("form1").set("background", "rgb(125,45,43)");

The Main Application Methods

The main application class AppModel has the following methods:

AME SYNTAX DESCRIPTION

ainWindow MainWindow mainWindow() Returns the MainWindow object.

orm FormList form() Returns the list of forms.

orm Form form(String name) Returns the form with the specified name.

eclaration DataSource
declaration(String name)

Returns the declaration object (ChoiceList or
UnitSet) with the specified name.
56 |

PR

a

s

N

m

m

t

t

r

r

f

f

The AppModel class has the following properties:

EXAMPLE CODE

app.set("asktosave", true);

The following code appends a text string to the application window title.
String oldTitle = app.mainWindow().getString("title");
app.mainWindow().set("title", oldTitle+" modified");

Main Window

The MainWindow class has the following methods:

The menuBar and toolBar items are visible in the application user interface if the
menu type is set to Menu bar in the Settings window of the Main Window. The
ribbon and fileMenu items are visible in the user interface if the menu type is set
to Ribbon. It is possible to access and modify items that are not visible based on
the menu type setting, but doing so will not have any visible effect in the user
interface.

OPERTY VALUE DEFAULT DESCRIPTION

sktosave true | false false If true, ask user if changes should be saved before
the application is closed.

tartmode edit | run edit Determines whether the application is opened
for editing or running when you double-click the
MPH file, including Windows desktop icons.

AME SYNTAX DESCRIPTION

enuBar ItemList menuBar() Returns the list of items in the menu bar.

enuBar Item menuBar(String
name)

Returns the menu bar item with the specified
name.

oolBar ItemList toolBar() Returns the list of items in the toolbar.

oolBar Item toolBar(String
name)

Returns the toolbar item with the specified name.

ibbon ItemList ribbon() Returns the list of items in the ribbon.

ibbon Item ribbon(String name) Returns the ribbon item with the specified name.

ileMenu ItemList fileMenu() Returns the list of items in the file menu.

ileMenu Item fileMenu(String
name)

Returns the file menu item with the specified
name.
 | 57

The MainWindow class has the following properties:

EXAMPLE CODE

app.mainWindow().set("showfilename", false);

Form

The Form class has the following methods:

The Form class has the following properties:

PROPERTY VALUE DEFAULT DESCRIPTION

showfilename true | false true If true the filename is included in the
window titlebar title.

title String My application The text to display in the window
titlebar.

NAME SYNTAX DESCRIPTION

getName String getName() Returns the name of this
form.

getParentForm Form getParentForm() Returns the parent form that
contains this form. Useful for
local cards in a card stack.

formObject FormObjectList formObject() Returns the list of form
objects.

formObject FormObject formObject(String name) Returns the form object with
the specified name.

PROPERTY VALUE DEFAULT DESCRIPTION

icon String "" The name of the background image.
Valid values are images defined in
Images>Libraries node in the
application tree.

iconhalign left | center |
right | fill |
repeat

center Horizontal alignment for the
background image.

iconvalign top | center |
bottom | fill |
repeat

center Vertical alignment for the background
image.

title String Form N The form title for an integer N.
58 |

EXAMPLE CODE

app.form("form1").set("icon", "compute.png");
app.form("form1").formObject("button1").set("enabled", false);

Form Object

The FormObject class has the following methods:

Most form objects have one or more of the properties listed in “General
Properties” on page 55. A form object has a certain property if the corresponding
setting is available in the Form editor. Additional properties are supported for
several types of form objects. The general properties that are supported and any
additional properties for form objects are listed in the following sections.

EXAMPLE CODE

The following code loops over all buttons and disables them:
for (FormObject formObject : app.form("form1").formObject()) {
 if ("Button".equals(formObject.getType())) {
 formObject.set("enabled", false);
 }
}

The getType method retrieves the type of form object. In the above example the
type of form object is Button and the statement
"Button".equals(formObject.getType()) represents a string comparison
between the output of the getType method and the string "Button".

NAME SYNTAX DESCRIPTION

getName String getName() Returns the name of this form object.

getParentForm Form getParentForm() Returns the parent form that contains this form
object.

getType String getType() Returns the form object type name, as defined in
the following sections.

form FormList form() For a CardStack form object, returns the list of
local cards.

form Form form(String name) For a CardStack form object, returns the local card
with the specified name.
 | 59

The following table lists all form object types that can be returned by getType:

ARRAY INPUT

Example Code
app.form("form1").formObject("arrayinput1").set("enabled", false);

FORM OBJECT TYPE

ArrayInput Hyperlink SelectionInput

Button Image Slider

CardStack InformationCardStack Spacer

CheckBox InputField Table

ComboBox Line Text

DataDisplay ListBox TextLabel

Equation Log ToggleButton

FileImport MessageLog Toolbar

Form ProgressBar Unit

FormCollection RadioButton Video

Graphics ResultsTable WebPage

Property Value Default Description

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.
60 |

BUTTON

In the Form editor, if a button has its Size setting set to Large, it always displays its
text property. If the button is Small, it either displays the icon or the text
according to the following rule: if the icon property is empty, the text is
displayed, if the icon property is not empty, the icon is displayed.

Example Code
app.form("form1").formObject("button1").set("enabled", false);

CARD STACK

Example Code
app.form("form1").formObject("cardstack1").set("visible", false);

To access objects in a local card, either use shortcuts or use the form method:
app.form("form1").formObject("cardstack1").form("card1").formObject("butto
n1").set("enabled", false);

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.

icon String "" The button icon. Valid values are
images defined in "Images > Libraries"
in the Application Builder.

text String Generated
automatically

The button text. The text must not be
an empty string.

tooltip String "" The button tooltip text.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
visible

See “General Properties” on
page 55.
 | 61

CHECK BOX

Example Code
app.form("form1").formObject("checkbox1").set("tooltip", "tooltip text");

COMBO BOX

Example Code
app.form("form1").formObject("combobox1").set("foreground", "blue");

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
fontunderline
foreground
visible

See “General Properties” on
page 55.

text String Generated
automatically

The check box label text.

tooltip String "" The check box tooltip text.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on
page 55.
62 |

DATA DISPLAY

Example Code
app.form("form1").formObject("datadisplay1").setColor("background", 192,
192, 192);

EQUATION

Example Code
app.form("form1").formObject("equation1").set("visible", false);

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on
page 55.

tooltip String "" The tooltip text.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
fontsize
foreground
visible

See “General Properties” on
page 55.
 | 63

FILE IMPORT

Example Code
app.form("form1").formObject("fileimport1").set("filetypes", new
String[]{"ALL2DCAD"});

FORM

A form used as a subform does not have any modifiable properties.

FORM COLLECTION

To modify the active pane, change the corresponding declaration variable.

Example Code
app.form("form1").formObject("collection1").set("font", "Arial");

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.

buttontext String Browse... Text to display on the button that opens
the file browser.

dialogtitle String File import Text to display as dialog title for the file
browser dialog. Also displayed as a tooltip
for the FileBrowser form object.

filetypes String[] {"ALLFILES"} Defines the list of file types that can be
selected in the file browser.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.
64 |

GRAPHICS

Example Code
This line of code displays plot group 5 (pg5) in the graphics object graphics1 in
the form with the name Temperature:

app.form("Temperature").formObject("graphics1").set("source",
model.result("pg5"));

The following line of code using useGraphics is equivalent to the above example:
useGraphics(model.result("pg5"), "Temperature/graphics1");

The code below displays the mesh in the model tree node mesh1 in the graphics
object graphics1 contained in the card of a card stack:

app.form("mesh").formObject("cardstack1").form("card1").formObject("graphi
cs1").set("source", model.mesh("mesh1"));

HYPERLINK

Example Code
with (app.form("form1").formObject("hyperlink1"));
 set("text", "COMSOL");
 set("url", "www.comsol.com");
endwith();

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
visible

See “General Properties” on page 55.

source ModelEntity Defines the type of model entity (Plot
Group, Geometry, Mesh, Explicit
Selection or Player Animation) to plot
in the graphics form object.

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
visible

See “General Properties” on page 55.

text String Generated
automatically

The text to display on the HyperLink
form object.

url String "" The URL to open when the HyperLink
is activated.
 | 65

IMAGE

Example Code
app.form("form1").formObject("image1").set("icon", "compute.png");

INFORMATION CARD STACK

Example Code
app.form("form1").formObject("infocard1").set("fontunderline", true);

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
visible

See “General Properties” on page 55.

icon String cube_large.png Defines the icon name to display in the
Image form object. Valid values are
images defined in the Images>Libraries
node in the application tree.

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
fontunderline
visible

See “General Properties” on page
55.
66 |

INPUT FIELD

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on
page 55.

editable true | false true If true then the text in the input
field can be edited by the user.

exponent superscript | E superscript When set to superscript,
exponents are displayed using
superscript font. When set to E,
exponents are displayed using
the character E followed by the
exponent value.

inputformatting on | off off If the value is on, then numerical
values in the input field are
formatted according to the
exponent, notation and
precision properties. When the
user is editing the text in the
input field, the formatting is
temporarily disabled so that the
original text can be edited.

maxdouble double 1000 The maximum allowed double
value. This property is only
accessible when the Filter setting
is set to Double and the
corresponding check box is
enabled in the Data Validation
section.

mindouble double 0 The minimum allowed double
value. This property is only
accessible when the Filter setting
is set to Double and the
corresponding check box is
enabled in the Data Validation
section.
 | 67

Example Code
app.form("form1").formObject("inputfield1").set("precision", 6);

maxinteger Integer 1000 The maximum allowed integer
value.This property is only
accessible when the Filter setting
is set to Integer and the
corresponding check box is
enabled in the Data Validation
section.

mininteger Integer 0 The minimum allowed integer
value. This property is only
accessible when the Filter setting
is set to Integer and the
corresponding check box is
enabled in the Data Validation
section.

notation auto |
scientific |
decimal

auto When the value is scientific,
numbers are always displayed
using scientific notation. When
the value is decimal, numbers
are never displayed using
scientific notation. When the
value is auto, the notation
depends on the size of the
number.

precision Integer 4 The number of significant digits
displayed.

tooltip String "" The tooltip displayed when the
mouse pointer is located over
the input field.

PROPERTY VALUE DEFAULT DESCRIPTION
68 |

LINE

Example Code
app.form("form1").formObject("line1").set("text", "divider text");

LIST BOX

Example Code
app.form("form1").formObject("listbox1").set("foreground", "red");

To change the list box contents, modify the corresponding choice list:
app.declaration("choicelist1").appendListRow("new value", "new name");

PROPERTY VALUE DEFAULT DESCRIPTION

enabed
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.

text String "" Text to display on the line. The text is only
displayed for horizontal lines that have Include
divider text enabled in the Line object Settings
window.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.
 | 69

LOG

Example Code
app.form("form1").formObject("log1").set("fontsize", "20");

MESSAGE LOG

Example Code
app.form("form1").formObject("messages1").set("background", "gray");

PROGRESS BAR

To create and update progress information see “Progress Methods” on page 110.

Example Code
app.form("form1").formObject("progressbar1").set("visible", false);

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
visible

See “General Properties” on page 55.
70 |

RADIO BUTTON

To change the display name for a radio button, modify the value in the
corresponding choice list.
For a choice list that is used by a radio button, it is not possible to change the value
of any row, or to add or remove rows. Only the display name can be changed.

Example Code
app.form("form1").formObject("radiobutton1").set("fontitalic", true);
app.declaration("choicelist1").setDisplayName("new name", 0);

RESULTS TABLE

To change the contents of the results table use the method useResultsTable or
evaluateToResultsTable. See also “GUI-Related Methods” on page 97.

Example Code
app.form("form1").formObject("resultstable1").set("visible", true);
useResultsTable(model.result().table("tbl2"), "/form1/resultstable1");

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
fontunderline
foreground
visible

See “General Properties” on page 55.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.
 | 71

SELECTION INPUT

Example Code
app.form("form1").formObject("selectioninput1").set("graphics",

"graphics1");

Alternatively, if there are shortcuts sel1 and g1 to the selectioninput1 and
graphics1 form objects:

sel1.set("graphics", g1);

To change the model selection, assuming sel1 is a shortcut to the selection input
form object:

sel1.set("source", model.selection("sel2"));

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.

graphics FormObject Defines the graphics form object to
use when the selection form object is
active.

source SelectionFeature Defines the model selection the
selection form object is connected to.
72 |

SLIDER

The min value is allowed to be larger than the max value, in which case the slider
behaves as if the values were swapped. The smallest value always corresponds to
the left side of the slider.

Example Code
app.form("form1").formObject("slider1").set("min", 1);
app.form("form1").formObject("slider1").set("max", 12);
app.form("form1").formObject("slider1").set("steps", 11);

SPACER

A spacer object does not have any modifiable properties.

TABLE

To change the contents of the table, change the declaration variables or model
entities the table is displaying.

Example Code
app.form("form1").formObject("table1").set("enabled", false);

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
visible

See “General Properties” on page 55.

max double 1 The largest possible slider value.

min double 0 The smallest possible slider value.

steps integer 5 The number of steps between the min and
max values. The number of tick marks is one
more than the number of steps.

tooltip String "" The tooltip text.

type real | integer real If type has the value integer, then the slider
value is restricted to integer values. If type
has the value real, the slider value can be a
noninteger value.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.
 | 73

TEXT

Example Code
app.form("form1").formObject("text1").set("textalign", "center");

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.

editable on | off off If the value is on, the text can be
edited by the user of the application. If
the value is off, the text can only be
changed programmatically.

textalign left | center |
right

left Defines how the text is aligned within
the text area.

wrap on | off on If the value is on, word wrapping is
used to break lines that are too long
to fit within the text area. If the value
is off, long lines may not be
completely visible.
74 |

TEXT LABEL

Example Code
app.form("form1").formObject("textlabel1").set("text", "custom text");

TOGGLE BUTTON

A button with size large always displays the text, a button with size small displays
either the icon or the text. If the icon property is empty, the text is displayed. If
the icon property is not empty, the icon is displayed.

Example Code
app.form("form1").formObject("togglebutton1").set("icon",
"about_information.png");

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
fontunderline
foreground
visible

See “General Properties” on
page 55.

text String Generated
automatically

The text to display in the
label when the label is not in
multiline mode.

textmulti String Generated
automatically

The text to display in the
label when the label is in
multiline mode.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.

icon String "" The button icon. Valid values are images
defined in "Images>Libraries" in the
Application Builder.

text String Generated
automatically

The button text. The text must not be
an empty string.

tooltip String "" The button tooltip text.
 | 75

TOOLBAR

Example Code
app.form("form1").formObject("toolbar1").set("background", "gray");

UNIT

Example Code
app.form("form1").formObject("unit1").set("visible", false);

VIDEO

Example Code
app.form("form1").formObject("video1").set("visible", false);

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.

PROPERTY VALUE DEFAULT DESCRIPTION

background
enabled
font
fontbold
fontitalic
fontsize
foreground
visible

See “General Properties” on page 55.

PROPERTY VALUE DEFAULT DESCRIPTION

visible See “General
Properties” on page 55.
76 |

WEB PAGE

Example Code
app.form("form1").formObject("webpage1").set("type", "report");
app.form("form1").formObject("webpage1").set("report", "rpt1"));
model.result().report("rpt1"));
model.result().report("rpt1").run();

Item

Item objects represent items, toggle items, and submenus in the menu bar,
toolbar, ribbon and file menu. The following methods are available:

PROPERTY VALUE DEFAULT DESCRIPTION

visible See “General Properties” on
page 55.

file String The file to display. File scheme
syntax is supported.

html String <html></html> The HTML code to display.

report ReportFeature
or String

The report feature to display.

type page | url |
type | report

page Determines which property is
used to specify the browser
display contents.

url String http://www.comsol.com The URL to display.

NAME SYNTAX DESCRIPTION

item ItemList item() Returns the list of subitems.

item Item item(String name) Returns the subitem with the specified name.

getParentItem Item getParentItem() Returns the parent item, or null for a
top-level item.
 | 77

The Item class contains the following properties:

In order for an item to be enabled, the enabled property needs to have the value
on for the item itself as well as for all of its parents. In other words, disabling an
item also disables all of its subitems.
Item objects also include separators. However, separators do not have any
accessible properties.

EXAMPLE CODE

app.mainWindow().menuBar("menu1").set("title", "new title");
app.mainWindow().menuBar("menu1").item("toggle_item1").set("text",
"test");

Data Source: Choice List and Unit Set

A DataSource object is either a ChoiceList or a UnitSet.

PROPERTY VALUE DEFAULT DESCRIPTION

enabled on | off on If the value is "on", the item can be
activated by the user. If the value is "off",
the item cannot be activated.

icon String Generated
automatically

The icon name. Valid values are images
defined in Images > Libraries in the
Application Builder.

text String Generated
automatically

The text for a menu or ribbon item.

title String Generated
automatically

The title text for a menu or submenu.

tooltip String "" The tooltip text.

visible on | off on Controls whether the item is visible or not.
78 |

NA

set

set

set

set

.

get

get

get

get

get

add

app

rem
CHOICE LIST AND UNIT SET METHODS

The methods described in the following table are applicable for both ChoiceList
and UnitSet objects. These methods are used to manipulate choice lists and unit
sets during run time.

ME SYNTAX DESCRIPTION

ListRow setListRow(String value, String
displayName, int row)

Sets the value and display name
for the given row (0-based). If the
row is equal to the length of the
list, a new row is added.

List setList(String[] values, String[]
displayNames)

Sets all of the values and display
names, replacing the contents of
the choice list or unit set.

Value setValue(String value, int row) Sets the value for the given row
(0-based). If the row is equal to
the length of the list, a new row is
added with the value and an
empty display name.

DisplayName setDisplayName(String displayName, int
row)

Sets the display name for the
given row (0-based). If the row is
equal to the length of the list, a
new row is added with the
display name and an empty value

Value String getValue(int row) Returns the value for the given
row (0-based).

DisplayName String getDisplayName(int row) Returns the display name for the
given row (0-based).

DisplayName String getDisplayName(String value) Returns the display name for the
row with the given value.

Values String[] getValues() Returns all values as an array.

DisplayNames String[] getDisplayNames() Returns all display names as an
array.

ListRow addListRow(String value, String
displayName, int row)

Inserts a new row with the given
value and display name at the
specified row (0-based).

endListRow appendListRow(String value, String
displayName)

Inserts a new row with the given
value and display name at the end
of the list.

oveListRow removeListRow(int row) Removes the given row (0-based)
from the list.
 | 79

Example Code
The code below adds the string Aluminum 3004 to a choice list. Note that the
choice list index starts at 0, whereas the material tags start at 1 (mat1, mat2, mat3,
and mat4).

ChoiceList choiceList = getChoiceList("choicelist1");
choiceList.setListRow("mat4", "Aluminum 3004", 3);

For more information on using choice lists for changing materials, see the book
Introduction to Application Builder.

UNIT SET METHODS

When the object is a UnitSet the following additional methods are also available:

Form, Form Object, and Item List Methods

The FormList, FormObjectList, and ItemList classes have the following
methods:

NAME SYNTAX DESCRIPTION

set set(String value) Switch unit for the unit set.

getString String getString() Returns the currently selected value for the unit
set.

getString String
getString(String
unitList)

Returns the selected unit for the given unit list.

NAME SYNTAX PURPOSE

names String[] names() Returns an array of names for all objects in the
list.

size int size() Returns the number of objects in the list.

index int index(String name) Returns the 0-based position of the object with
a given name in the list.

get Form get(String name)
FormObject get(String
name)
Item get(String name)

Returns the object with a given name.

get Form get(int index)
FormObject get(int
index)
Item get(int index)

Returns the object at a certain index.
80 |

It is also possible to use a list in an enhanced for loop to operate on all objects in
the list.

In the following example, the background color is set to red in all forms:
for (Form f : app.form()) { // app.form() is of type FormList

f.set("background", "red");
}

 | 81

NA

cr

re

mo

un

ge

lo

lo

The Built-in Method Library for the Application Builder

This section lists built-in methods available in the Method editor in addition to
the methods that operate on the model and application objects. For more
information on the model object and its methods, refer to earlier sections of this
book and the Programming Reference Manual. For more information on the
application object, see “The Application Object” on page 51.
The syntax rules are those of the Java® programming language. Note that each line
of code needs to end with a semicolon (;), but the semicolon is omitted in the
listings below.

Model Uti l ity Methods

The following table summarizes the model utility methods for creating, loading,
and saving model objects. The model object is stored on the MPH file format.

ME SYNTAX DESCRIPTION

eateModel Model createModel(String tag) Creates a new model with the
given tag.

moveModel removeModel(String tag) Removes a model. The
embedded model cannot be
removed.

delTags String[] modelTags() Returns an array of model tags
for all loaded models, including
the embedded model.

iqueModeltag String uniqueModeltag(String prefix) Returns a model tag that is not in
use.

tModel Model getModel(String tag) Returns the model with a
specified tag.

adModel Model loadModel(String tag, String
filename)

Loads a model with a specified
tag from a file.

adProtectedModel Model loadProtectedModel(String tag,
String filename, String password)

Loads a password protected
model with a specified tag from a
file.
82 |

loa

sav

NAME

read n

ile
e

open

NA
Example Code
The code below loads a model using loadModel, presented in the table above. It
extracts the x-, y-, and z-coordinates of all mesh nodes and stores them in a 2D
double array coords[3][N], where N is the number of mesh nodes. The individual
x-,y-, and z- coordinates are available as the length-N 1D arrays coords[0],
coords[1], coords[2], respectively. (The node locations can be plotted by using
the Cut Point 3D data set in combination with a 3D Point Trajectories plot.)

Model extmodel = loadModel("model", "C:\\Paul\\pacemaker_electrode.mph");
SolverFeature step = extmodel.sol("sol1").feature("v1");
XmeshInfo xmi = step.xmeshInfo();
XmeshInfoNodes nodes = xmi.nodes();
double[][] coords = nodes.coords();

For more information on methods operating on the model object, see the
Programming Reference Manual.

File Methods

File methods are used to read and write data to a file or portions of a file. Note
that higher-level techniques for reading and writing to files are available from
within the Application Builder user interface. For more information, see the book
Introduction to Application Builder and “GUI Command Methods” on page
107.

dRecoveryModel Model loadRecoveryModel(String tag,
String foldername)

Loads a model from a recovery
directory/folder structure.

eModel saveModel(Model model, String
filename)

Saves a model to a file. The
filename can be a file scheme
path or (if allowed by security
settings) a server file path.

SYNTAX DESCRIPTION

File String readFile(String name) Returns the contents in the give
file name as a string. The string
name is the absolute path to a f
or a path given by the file schem
syntax.

FileStreamReader CsReader
openFileStreamReader(String
name)

Returns a CsReader that can be
used to read line-by-line or
character-by-character from the
given file name.

ME SYNTAX DESCRIPTION
 | 83

open t

read
le

l

read

l

read

s
t

writ s

writ s
 is

n.

writ

at

writ

at

If
ts

writ

at

NAM
BinaryFileStreamReader CsBinaryReader
openBinaryFileStreamReader(Stri
ng name)

Returns a CsBinaryReader tha
can be used to read from the
given file byte-by-byte.

MatrixFromFile double[][]
readMatrixFromFile(String name)

Reads the contents of the given
file into a double matrix. The fi
has the same spreadsheet type
format as available in the mode
tree Export node.

StringMatrixFromFile String[][]
readStringMatrixFromFile(String
name)

Reads the contents of the given
file into a string matrix. The file
has the same spreadsheet type
format as available in the mode
tree Export node.

CSVFile String[][] readCSVFile(String
name)

Reads a file with
comma-separated values (CSV
file) into a string matrix. Expect
file to use the RFC 4180 forma
for CSV.

eFile writeFile(String name, String
contents)

Writes the given string content
to the given file name.

eFile writeFile(String name, String
contents, boolean append)

Writes the given string content
to the given file name. If append
true, then the contents are
appended instead of overwritte

eFile writeFile(String name,
double[][] data)

Writes the array data to the
given file. The spreadsheet form
is used, which means it can be
read by readMatrixFromFile.

eFile writeFile(String name,
double[][] data, boolean
append)

Writes the array data to the
given file. The spreadsheet form
is used, which means it can be
read by readMatrixFromFile.
append is true, then the conten
are appended instead of
overwritten.

eFile writeFile(String name,
String[][] data)

Writes the array data to the
given file. The spreadsheet form
is used, which means it can be
read by
readStringMatrixFromFile.

E SYNTAX DESCRIPTION
84 |

writ

at

ts

open

open

 is

n.

open t
n

open t
n
e,
d

writ

0

writ

0

ts

writ

0

writ

0

ts

NAME
eFile writeFile(String name,
String[][] data, boolean
append)

Writes the array data to the
given file. The spreadsheet form
is used, which means it can be
read by
readStringMatrixFromFile. If
append is true, then the conten
are appended instead of
overwritten.

FileStreamWriter CsWriter
openFileStreamWriter(String
name)

Returns a CsWriter that can
write to the given file.

FileStreamWriter CsWriter
openFileStreamWriter(String
name, boolean append)

Returns a CsWriter that can
write to the given file. If append
true, then the contents are
appended instead of overwritte

BinaryFileStreamWriter CsBinaryWriter
openBinaryFileStreamWriter(Stri
ng name)

Returns a CsBinaryWriter tha
can be used to write to the give
file byte-by-byte.

BinaryFileStreamWriter CsBinaryWriter
openBinaryFileStreamWriter(Stri
ng name, boolean append)

Returns a CsBinaryWriter tha
can be used to write to the give
file byte by byte. If append is tru
then the contents are appende
instead of overwritten.

eCSVFile writeCSVFile(String name,
String[][] data)

Writes the given string array
data to a CSV file. The RFC 418
format is used for the CSV.

eCSVFile writeCSVFile(String name,
String[][] data, boolean
append)

Writes the given string array
data to a CSV file. The RFC 418
format is used for the CSV. If
append is true, then the conten
are appended instead of
overwritten.

eCSVFile writeCSVFile(String name,
double[][] data)

Writes the given double array
data to a CSV file. The RFC 418
format is used for the CSV.

eCSVFile writeCSVFile(String name,
double[][] data, boolean
append)

Writes the given double array
data to a CSV file. The RFC 418
format is used for the CSV. If
append is true, then the conten
are appended instead of
overwritten.

SYNTAX DESCRIPTION
 | 85

exis en

,

t
st,

dele e

a

copy h
n

impo x

n

ile

impo x

e

writ

in

NAM
ts boolean exists(String name) Tests whether a file with the giv
name exists.

If the name is not a file scheme
path name or an absolute path
then the method first finds out
whether a file with file scheme
path embedded:/// + argumen
exists. If such a file does not exi
then it tests whether there is a
file with a matching name in the
current working directory.

teFile deleteFile(String file) Delete a file with the given nam
if it exists. The file is deleted on
the server,. The name can use
file scheme path.

File copyFile(String sourceFile,
String destFile)

Copies a file on the server. Bot
the source and target names ca
use file scheme paths.

rtFile importFile(String name) Displays a file browser dialog bo
and uploads the selected file to
the file declaration with the give
name. After this, the uploaded f
can be accessed with
upload:///<name>.

rtFile importFile(ModelEntity entity,
String name)

Displays a file browser dialog bo
and uploads the selected file to
the Filename text field in the
given model object entity. This
defines an input file that the
application will need at a later
stage. For example, the Filenam
of an interpolation function
accessed with
model.func(’<tag>’)). The
uploaded file can be accessed
with
upload:///<tag>/filename.

eExcelFile writeExcelFile(String name,
String[][] data)

Writes the given string array
data starting from the first cell
the first sheet of an Excel file.

E SYNTAX DESCRIPTION
86 |

writ

read l

read

getF

er
es

ss

.

NAME
eExcelFile writeExcelFile(String name,
String sheet, String cell,
String[][] data)

Writes the given string array
data starting from the specified
cell in the specified sheet of an
Excel file.

ExcelFile String[][] readExcelFile(String
name)

Reads the first sheet of an Exce
file, starting from the first cell,
into a String[][].

ExcelFile String[][] readExcelFile(String
name, String sheet, String
cell)

Reads the specified sheet of an
Excel file, starting from the
specified cell, into a String[][].

ilePath String getFilePath(String name) Returns the absolute server file
path of the server proxy file
corresponding to a certain file
scheme path, or null if the serv
proxy file for the given path do
not exist.

This method can be used to pa
the path to, for example, a file
using the temp:/// scheme to
external code or an application

SYNTAX DESCRIPTION
 | 87

getC

n

k.
n

at
n

e

getC

n

k.
n

at
n

e

NAM
EXAMPLE CODE

This line of code copies the uploaded file file1 to the temp folder with new file
name file2.mphbin.

copyFile("upload:///file1", "temp:///file2.mphbin");

This line of code deletes the file file2.mphbin from the temp folder.
deleteFile("temp:///file2.mphbin");

lientFileName String getClientFileName(String
name)

Returns the original name of an
uploaded file on the client file
system (or null if there is no
uploaded file matching the give
file scheme path).

This method is only useful for
providing user interface feedbac
For example, to get informatio
on which uploaded file is being
used. There is no guarantee th
the original file would still exist o
the client or even that the
current client would be the sam
as the original client.

lientFilePath String getClientFilePath(String
name)

Returns the original path of an
uploaded file on the client file
system (or null if there is no
uploaded file matching the give
file scheme path).

This method is only useful for
providing user interface feedbac
For example, to get informatio
on which uploaded file is being
used. There is no guarantee th
the original file would still exist o
the client or even that the
current client would be the sam
as the original client.

E SYNTAX DESCRIPTION
88 |

NA

exe

exe

fil

get

ope
Operating System Methods

Operating system methods are used for accessing operating system information
and commands from an application.

ME SYNTAX DESCRIPTION

cuteOSCommand String executeOSCommand(String
command, String... params)

Executes the OS command with
the given command (full path)
and parameters. Execution times
out after a default 180 seconds.
Returns everything the process
printed to its out stream as a
string. When applicable, the
command is run server side.

cuteOSCommand String executeOSCommand(String
command, int timeoutSec, String
params...)

Executes the OS command with
the given command (full path)
and parameters. Returns
everything the process printed to
its out stream as a string. The
execution is forcibly stopped after
timeoutSec seconds if the
command has not finished. To
disable the timeout functionality,
timeoutSec value 0 can be used.
When applicable, the command
is run server side.

eOpen fileOpen(String name) Opens the file represented by
name with the associated
program on the client. Also see
the section “File Methods”.

User String username = getUser() Returns the username of the user
that is running the application. If
the application is not run from
COMSOL Server, then the value
of the preference setting
General>Username>Name is
returned.

nURL openURL(String url) Opens a URL in the default
browser on the client.
 | 89

pl

pl

NA
EXAMPLE CODE

The line of code below plays one of the sounds available in the data/sounds folder
of the COMSOL installation and has been embedded in the application and stored
in the Sounds library.

playSound("embedded:///success_1.wav");

In the command sequence of a form object, this is equivalent to selecting a sound
node under Libraries and clicking Run.
The line of code below opens a PDF file embedded in the application and stored
in the File library.

fileOpen("embedded:///tubular_reactor.pdf");

In the command sequence of a form object, this is equivalent to selecting an Open
File node under GUI Commands>File Commands and clicking Run.

aySound playSound(String name) Plays the sounds in the given file
on the client. Only .wav files are
supported; no external libraries
are required.

aySound playSound(double hz, int millis) Plays a signal at a given frequency
hz and with given duration
millis in milliseconds on the
client.

ME SYNTAX DESCRIPTION
90 |

As an alternative technique, you can call a method in a command sequence with
an input argument, as shown in the example below. The figure below shows a
method b_open_pdf that opens a file with filename as an input argument.
 | 91

The figure below shows the corresponding command sequence for a ribbon menu
item.

Note that the same functionality is available from a command sequence by
selecting the editor tree node GUI Commands>File Commands>Open File.
This line of code opens the COMSOL home page in the default browser:

openURL("http://www.comsol.com");
92 |

NA

ema

sen

sen

sen

use

NAM

Ema

Ema
ver
Email Methods

Email methods are used for sending emails from an application, typically with
attachments containing results from a simulation.

Email Class Methods
The class EmailMessage can be used to create custom email messages.

ME SYNTAX DESCRIPTION

ilFromAddress String emailFromAddress() Returns the email from address
from the COMSOL Server or
preferences setting.

dEmail sendEmail(String subject, String
bodyText)

Sends an email to the default
recipient(s) with the specified
subject and body text.

dEmail sendEmail(String subject, String
bodyText, ModelEntity... modelEntity)

Sends an email to the default
recipient(s) with the specified
subject, body text, and zero or
more attachments created from
Report, Export, and Table nodes
in the embedded model.

dEmail sendEmail(String toAddress, String
subject, String bodyText,
ModelEntity... modelEntity)

Sends an email to the specified
recipient(s) with the specified
subject, body text, and zero or
more attachments created from
Report, Export, and Table nodes
in the embedded model.

rEmailAddress String userEmailAddress() Returns the user email
address(es) corresponding to the
currently logged in user, or an
empty string if the user has not
configured an email address.

E SYNTAX DESCRIPTION

ilMessage EmailMessage mail = new EmailMessage() Creates a new EmailMessage
object.

ilMessage.setSer mail.setServer(String host, int port) Sets the email (SMTP) server
host and port to use for this
email message.
 | 93

Ema
r

t

Ema
uri

e

r

Ema
m

Ema

Ema

Ema

Ema
jec

Ema
yTe

.
t

Ema
yHt a

Ema
Fil

Ema
Fil

Ema
Fro

Ema
Tex s

NAM
ilMessage.setUse mail.setUser(String name, String
password)

Sets the username and password
to use for email (SMTP) server
authentication. This method mus
be called after the setServer
method.

ilMessage.setSec
ty

mail.setSecurity(String security) Sets the connection security typ
for email (SMTP) server
communication. Valid values are
’none’, ’starttls’ and ’tls’.
This method must be called afte
the setServer method.

ilMessage.setFro mail.setFrom(String fromAddress) Sets the from address.

ilMessage.setTo mail.setTo(String... to) Sets the to addresses.

ilMessage.setCc mail.setCc(String... cc) Sets the cc addresses.

ilMessage.setBcc mail.setBcc(String... bcc) Sets the bcc addresses.

ilMessage.setSub
t

mail.setSubject(String subject) Sets the email subject line. Note
that newline characters are not
allowed.

ilMessage.setBod
xt

mail.setBodyText(String body) Sets the email body as plain text
An email can contain both a tex
and an HTML body.

ilMessage.setBod
ml

mail.setBodyHtml(String body) Sets the email body as HTML
text. An email can contain both
text and an HTML body.

ilMessage.attach
e

mail.attachFile(String filename) Adds an attachment from a file.
The attachment MIME type is
determined by the file name
extension.

ilMessage.attach
e

mail.attachFile(String filename,
String mimeType)

Adds an attachment from a file
with the specified MIME type.

ilMessage.attach
mModel

mail.attachFromModel(ModelEntity
modelEntity)

Adds an attachment created
from a report, export, or table
feature in the model.

ilMessage.attach
t

mail.attachText(String text, String
mimeSubType)

Adds a text attachment with a
specified sub-MIME type, such a
plain or HTML.

E SYNTAX DESCRIPTION
94 |

Ema
Bin

Ema

NAM
Each to, cc, and bcc address string can contain multiple email addresses separated
by a comma or a semicolon character. Whitespace is allowed before and after the
separator character.

EMAIL PREFERENCES

To set preferences for an outgoing email (SMTP) server, open the Email page of
the Preferences dialog box, as shown in the figure below.

COMSOL Server provides a similar set of email preferences.

ilMessage.attach
ary

mail.attachBinary(byte[] binary,
String mimeType)

Adds an attachment from a byte
array with the specified MIME
type.

ilMessage.send mail.send() Sends the email to the email
(SMTP) server. An email object
can only be sent once.

E SYNTAX DESCRIPTION
 | 95

EXAMPLE CODE

The following code sends an email and attaches a report:
EmailMessage mail = new EmailMessage();
mail.setTo(email_to);
mail.setSubject("Tubular Reactor Simulation");
mail.setBodyText("The computation has finished. Please find the report
attached.");
mail.attachFromModel(model.result().report("rpt1"));
mail.send();

This code is run in the Tubular Reactor application, which is available as an
application example in the Application Libraries. The figure below shows part of
the user interface with an input field for the email address.

The figure below shows the corresponding form object and Settings window.

The following code is similar but also configures the email server settings.
96 |

NAM

Call

call

useG

useF

clos
EmailMessage mail = new EmailMessage();
mail.setServer("smtp.myemail.com", 587);
mail.setUser("user@myemail.com", "password");
mail.setSecurity("starttls");
mail.setFrom("user@myemail.com");
mail.setTo("otheruser@somedomain.com");
mail.setSubject("Tubular reaction simulation");
mail.setBodyText("The computation has finished");
mail.send();

GUI-Related Methods

The graphical user interface (GUI) related methods are used for displaying dialog
boxes with messages, editing form objects and user interface content, getting
run-time properties of the application user interface, and running methods.

E SYNTAX DESCRIPTION

 a method directly <methodName>() Call a method from the
Methods list by using its
name, for example,
method1(), method2().

Method callMethod(String name) Alternate way to call a
method from the Methods
list; used internally and in
cases of name collisions.

raphics useGraphics(ModelEntity entity,
String name)

Plots the given entity (Plot
Group, Geometry, Mesh,
Explicit Selection or Player
Animation) in the graphics
form object given by the
name or name path in the
second argument.

orm useForm(String name) Shows the form with the
given name in the current
main window. Equivalent to
the use method of a Form
object; see below.

eDialog closeDialog(String name) Closes the form, shown as a
dialog box, with the given
name.
 | 97

dia

e

ale s

ale s

con s

r

con s

.

r

con s

.

NAM
log dialog(String name) Shows the form with the
given name as a dialog box.
Equivalent to the dialog
method of a Form object; se
below.

rt alert(String text) Stops execution and display
an alert message with the
given text.

rt alert(String text, String title) Stops execution and display
an alert message with the
given text and title.

firm String confirm(String text) Stops execution and display
a confirmation dialog box
with the given text. It also
displays two buttons, "Yes"
and "No". The method
returns "Yes" or "No"
depending on what the use
clicks.

firm String confirm(String text, String
title)

Stops execution and display
a confirmation dialog box
with the given text and title
It also displays two buttons,
"Yes" and "No". The method
returns "Yes" or "No"
depending on what the use
clicks.

firm String confirm(String text, String
title, String yes, String no)

Stops execution and display
a confirmation dialog box
with the given text and title
It also displays two buttons
with the given strings as
labels. The method returns
the label of the button that
the user clicks.

E SYNTAX DESCRIPTION
98 |

conf s

.

erro

requ s
,

requ s
,

e

e

requ s
,

NAM
irm String confirm(String text, String
title, String yes, String no,
String cancel)

Stops execution and display
a confirmation dialog box
with the given text and title
It also displays three buttons
with the given strings as
labels. The method returns
the label of the button that
the user clicks.

r error(String message) Stops execution and opens
an error dialog box with the
given message.

est String request(String text) Stops execution and display
a dialog box with a text field
requesting input from the
user. The given text is the
label of the text field. The
method returns the entered
text or null if the cancel
button is clicked.

est String request(String text, String
defaultString)

Stops execution and display
a dialog box with a text field
requesting input from the
user. The given text is the
label of the text field and th
default string is the text
initially shown in the text
field. The method returns th
entered text or null if the
cancel button is clicked.

est String request(String text, String
title, String defaultString)

Stops execution and display
a dialog box with a text field
requesting input from the
user. The given text is the
label of the text field, the
default string is the text
initially shown in the text
field, and the title is the title
of the dialog box. The
method returns the entered
text or null if the cancel
button is clicked.

E SYNTAX DESCRIPTION
 | 99

mes

e

eva

e

is

,

eva

.

eva

NAM
sage message(String message) Sends a message to the
message log if available in th
application.

luateToResultsTable evaluateToResultsTable(NumericalFe
ature entity, String name, boolean
clear)

Evaluates the given entity, a
Derived Value, in the table
object given by the name or
name path in the second
argument, which will then b
the default target for the
evaluations of the Derived
Value. If the third argument
true, the table is cleared
before adding the new data
otherwise the data is
appended.

luateToDoubleArray2D double[][]
evaluateToDoubleArray2D(NumericalF
eature entity)

Evaluates the given entity, a
Derived Value, and returns
the non-parameter column
part of the real table that is
produced as a double matrix
All settings in the numerical
feature are respected, but
those in the current table
connected to the numerical
feature are ignored.

luateToIntegerArray2D int[][]
evaluateToIntegerArray2D(Numerical
Feature entity)

Evaluates the given entity, a
Derived Value, and returns
the non-parameter column
part of the real table that is
produced as an integer
matrix. All settings in the
numerical feature are
respected, but those in the
current table connected to
the numerical feature are
ignored.

E SYNTAX DESCRIPTION
100 |

eval

useR

getC e

e

e
t

setF

setF

setF

setF e

NAM
uateToStringArray2D String[][]
evaluateToStringArray2D(NumericalF
eature entity)

Evaluates the given entity, a
Derived Value, and returns
the non-parameter column
part of the, potentially
complex, table that is
produced as a string matrix.
All settings in the numerical
feature are respected but
those in the current table
connected to the numerical
feature are ignored.

esultsTable useResultsTable(TableFeature
tableFeature, String resultsTable)

Shows the values from the
tableFeature in the
resultsTable form object.

hoiceList ChoiceList getChoiceList(String
name)

Returns an object of the typ
ChoiceList, representing a
choice list node under the
declarations branch. The typ
ChoiceList has methods
that make it easier to chang
the matrix value with respec
to changing and accessing
values and display names
individually.

ormObjectEnabled setFormObjectEnabled(String name,
boolean enabled)

Sets the enable state for the
form object specified by the
name or name path.

ormObjectVisible setFormObjectVisible(String name,
boolean visible)

Sets the visible state for the
form object specified by the
name or name path.

ormObjectText setFormObjectText(String name,
String text)

Sets the text for the form
object specified by the name
or name path in the second
argument. This method
throws an error if it is
impossible to set a text for
the specified form object.

ormObjectEditable setFormObjectEditable(String name,
boolean editable)

Sets the editable state for th
form object specified by the
name or name path. This
functionality is only available
for text field objects.

E SYNTAX DESCRIPTION
 | 101

set

set

set

set

set

use

res

s

t.

get

ts

t.

NAM
MenuBarItemEnabled setMenuBarItemEnabled(String name,
boolean enabled)

Sets the enable state for the
menu bar item specified by
the name or name path (from
menu bar) in the first
argument.

MainToolbarItemEnabled setMainToolbarItemEnabled(String
name, boolean enabled)

Sets the enable state for the
main toolbar item specified
by the name or name path
(from main toolbar) in the
first argument.

FileMenuItemEnabled setFileMenuItemEnabled(String name,
boolean enabled)

Sets the enable state for the
file menu item specified by
the name or name path
(from file menu) in the first
argument.

RibbonItemEnabled setRibbonItemEnabled(String name,
boolean enabled)

Sets the enable state for the
ribbon item specified by the
name or name path (from
main window) in the first
argument.

ToolbarItemEnabled setToolbarItemEnabled(String name,
boolean enabled)

Sets the enable state for the
toolbar form object item
specified by the name or
name path in the first
argument.

View useView(View view, String name) Applies a view to the
graphics contents given by
the name or name path in
the second argument.

etView resetView(String name) Resets the view to its initial
state in the graphics content
given by the name or name
path in the second argumen

View View getView(String name) Returns the view currently
used by the graphics conten
given by the name or name
path in the second argumen

E SYNTAX DESCRIPTION
102 |

setW

e

getS f
t

getS f
t

NAM
ALERTS AND MESSAGES

The methods alert, confirm, and request display a dialog box with a text string
and optional user input. The following example uses confirm to ask the user if a
direct or an iterative solver should be used in an application. Based on the answer,
the alert function is then used to show the estimated memory requirement for
the selected solver type in a message dialog box:

String answer = confirm("Which solver do you want to use?",
"Solver Selection","Direct", "Iterative");
if(answer.equals("Direct")) {
 alert("Using the direct solver will require about 4GB of memory when
solving.");
} else {
 alert("Using the iterative solver will require about 2GB of memory when
solving.");
}

EXAMPLE CODE

This line of code displays plot group 5 (pg5) in the graphics object graphics1 in
the form with the name Temperature:

useGraphics(model.result("pg5"), "/Temperature/graphics1");

The code below displays the mesh in the model tree node mesh1 in the graphics
object graphics1 contained in the card of a card stack. The second line runs a
zoom extents command to ensure proper visualization of the mesh.

useGraphics(model.mesh("mesh1"), "/mesh/cardstack1/card1/graphics1");

ebPageSource setWebPageSource(String name,
String source)

Sets the source for the form
object specified by the name
or name path in the first
argument. This method
throws an error if the name
does not refer to a Web Pag
form object.

creenHeight int getScreenHeight() Returns the height in pixels o
the primary screen on clien
system, or of the browser
window if Web Client is
used.

creenWidth int getScreenWidth() Returns the width in pixels o
the primary screen on clien
system, or of the browser
window if Web Client is
used.

E SYNTAX DESCRIPTION
 | 103

zoomExtents("/mesh/cardstack1/card1/graphics1");

The code below displays a request dialog box that lets the user type in a file name
for an HTML report. If the user has typed a file name, then a report is generated.

String answerh = request("Enter file name","File Name", "Untitled.html");
if(answerh != null){
 model.result().report("rpt1").set("format","html");
 model.result().report("rpt1").set("filename","user:///"+answerh);
 model.result().report("rpt1").run();
}

The code below is similar to the code above, but in this case the report is saved in
Microsoft® Word® format (.docx).

String answerw = request("Enter file name","File Name", "Untitled.docx");
if(answerw != null){
 model.result().report("rpt2").set("format","docx");
 model.result().report("rpt2").set("filename","user:///"+answerw);
 model.result().report("rpt2").run();
}

This line of code sets the view of the graphics object form1/graphics1 to View 5,
as defined in the model tree:

useView(model.view("view5"), "form1/graphics1");
104 |

You can use Model Data Access in combination with Editor Tools to create a slider
or an input field that sets the transparency level (alpha) of a plot group. The figure
below shows a Settings window of a slider with the transparency level as Source.

In this case you need to create a method for updating the view that is called to
handle an event from the slider or form object. In the example above, the slider
uses a Local method defined in the Events section. This method contains one line
of code that updates the view:

useView(getView("/form1/graphics1"), "/form1/graphics1");

Note that different transparency levels are not supported when accessing an
application from a browser using COMSOL Server.
 | 105

Note that you can also set a view from the command sequence of, for example, a
button: select a view subnode under the Views node in the editor tree and click the
Plot button under the tree.

This line of code sets the URL source of the form object webpage1 to the
COMSOL web page:

setWebPageSource("/form1/webpage1", "http://www.comsol.com");

This line of code forms a string containing the screen width and height:
screenSize =
toString(getScreenWidth())+"-by-"+toString(getScreenHeight());

You can present the string with an input field or a data display object using this
string as a source (the string screenSize needs to be declared first).
106 |

N

c

c

e

f

f

p

s

s

s

t

z

GUI Command Methods

The GUI command methods correspond to the GUI Commands node in the editor
tree. The editor tree is is displayed in, for example, the Choose Commands to Run
section in the Settings window for a button object in the Application Builder.

EXAMPLE CODE

The line of code below saves a document to the user folder (as specified in the
Preferences).

fileSaveAs("user:///mixer.docx");

The following code changes the camera position and updates the graphics for each
change.

useView(model.view("view1"), "/form1/graphics1");
for (int i = 0; i < 25; i++) {
 sleep(2000);
 model.view("view1").camera().set("zoomanglefull", 12-i*5.0/25);
 useGraphics(model.geom("geom1"), "/form1/graphics1");
}

AME SYNTAX DESCRIPTION

learAllMeshes clearAllMeshes() Clears all meshes.

learAllSolutions clearAllSolutions() Clears all solutions.

xit exit() Exits the application.

ileOpen fileOpen(String name) Opens a file with the associated
program on the client.

ileSaveAs fileSaveAs(String file) Downloads a file to the client.
See also the section “File
Methods”.

rintGraphics printGraphics(String graphicsName) Prints the given graphics object.

aveApplication saveApplication() Saves the application.

aveApplicationAs saveApplicationAs() Saves the application under a
different name. (Or as an MPH
file.)

cenelight sceneLight(String graphicsName) Toggles scene light in the given
graphics object.

ransparency transparency(String graphicsName) Toggles transparency in the given
graphics object.

oomExtents zoomExtents(String graphicsName) Makes the entire model visible
within the extent of the given
graphics object.
 | 107

Debug Method

The debug method is used to display variable contents in the Debug Log window.

EXAMPLE CODE

The code below prints strings and doubles to the Debug Log window.
xcoords[i] = Math.cos(2.0*Math.PI*divid);
ycoords[i] = Math.sin(2.0*Math.PI*divid);
debugLog("These are component values for case 1:");
debugLog("x:");
debugLog(xcoords[i]);
debugLog("y:");
debugLog(ycoords[i]);

Methods for External C Libraries

The methods for external C libraries are used for linking Application Builder
methods with compiled C-code.

EXTERNAL METHOD

NAME SYNTAX DESCRIPTION

debugLog debugLog(arg) Prints the value of arg to the
Debug Log window. The input
argument arg can be a scalar, 1D
array, or 2D array of the types
string, double, int or Boolean.

NAME SYNTAX DESCRIPTION

external External external(String name) Returns an interface to an
external C (native) library given
by the name of the library
feature. The External class uses
the Java Native Interface (JNI)
framework.
108 |

NA

inv

inv

clo

METHODS RETURNED BY THE EXTERNAL METHOD

The external method returns an object of type External with the following
methods:

ME SYNTAX DESCRIPTION

oke long invoke(String method, Object...
arguments)

Invokes the named native
method in the library with the
supplied arguments. Strings are
converted to char *. Returns the
value returned by the method.
(Only 32 bits are returned on a
32-bit platform.)

okeWideString long invokeWideString(String method,
Object... arguments)

Invokes the named native
method in the library with the
supplied arguments. Strings are
converted to wchar_t *. Returns
the value returned by the
method. (Only 32 bits are
returned on a 32-bit platform.)

se void close() Releases the library and frees
resources. If you do not call this
method, it is automatically
invoked when the external library
is no longer needed.
 | 109

NAM

setP e

e

r
n

setP

l.
l,

l

e

setP

if
Progress Methods

Progress methods are used to create and update progress information in the Status
bar, in a progress form object, and in a dialog box.

E SYNTAX DESCRIPTION

rogressInterval setProgressInterval(String message,
int intervalStart, int intervalEnd)

Sets a progress interval to us
for the top-level progress and
display message at that level.
The top level will go from
intervalStart to
intervalEnd as the second
level goes from 0 to 100. As
the second level increases, th
top level is increased by
(intervalEnd -

intervalStart) * (second

level progress (0-100) /

100).

The value for intervalStart
must be between 0 and
intervalEnd, and the value fo
intervalEnd must be betwee
intervalStart and 100.

Calling this method implicitly
resets any manual progress
previously set by calls to
setProgress().

rogress setProgress(int value, String message) Sets a value for the
user-controlled progress leve
By default, this is the top leve
but if a progress interval is
active (setProgressInterva
has been called and
resetProgress has not been
called after that), then it is th
second level.

rogress setProgress(int value) Same as
setProgress(message,

value), but uses the latest
message or an empty string (
no message has been set).
110 |

rese

show
ess ss

el

show
ess ss

show

show

show

l

s

show

,
ly
n
s

clos

NAM
tProgress resetProgress() Removes all progress levels
and resets progress to 0 and
the message to an empty
string.

IndeterminateProgr showIndeterminateProgress(String
message)

Shows a progress dialog box
with an indeterminate progre
bar, given message and a canc
button.

IndeterminateProgr showIndeterminateProgress(String
message, boolean cancelButton)

Shows a progress dialog box
with an indeterminate progre
bar, given message and an
optional cancel button.

Progress showProgress() Shows a progress dialog box
with a cancel button. No
model progress is included.

Progress showProgress(boolean modelProgress) Shows a progress dialog box
with a cancel button and an
optional model progress.

Progress showProgress(boolean modelProgress,
boolean addSecondLevel)

Shows a progress dialog box
with a cancel button, optiona
model progress, and one or
two levels of progress
information. Two levels can
only be used if modelProgres
is true.

Progress showProgress(boolean modelProgress,
boolean addSecondLevel, boolean
cancelButton)

Shows a progress dialog box
with optional model progress
one or two levels, and possib
a cancel button. Two levels ca
only be used if modelProgres
is true.

eProgress closeProgress() Closes the currently shown
progress dialog box.

E SYNTAX DESCRIPTION
 | 111

star
e

ss
n

setP

e

.

e
h,
,

ss
n

setP
.

NAM
EXAMPLE CODE

showProgress(true, true, true);
/* Opens a progress dialog box with cancel button showing two levels of
progress. The values shown in progress dialog box will be updated to match
the two levels of progress. */

setProgressInterval("Preparing application", 0, 20);
/* Sets the current progress scale to go from 0 to 20. This means that the
top-level progress will go from 0 to 20 when second-level progress goes from
0 to 100. */

setProgress(0, "Init step 1");

tProgress startProgress(String name) Resets the value of the given
progress bar form object nam
to 0. The progress bar to
control can be specified with
an absolute path, such as
form1/progressbar1, or a
name relative to the context
from which the method was
called.

Nothing is done if no progre
bar corresponding to the give
name is found.

rogressBar setProgressBar(String name, int
workDone, String message)

Sets the value of the given
progress bar form object nam
in the range 0-100 and the
associated progress message
Values out of range are
converted to 0 or 100. The
progress bar to control can b
specified with an absolute pat
such as form1/progressbar1
or a name relative to the
context from which the
method was called.

Nothing is done if no progre
bar corresponding to the give
name is found, or if the
progress bar is used for
showing model progress.

rogressBar setProgressBar(String name, int
workDone)

Same as above, but does not
update the progress message

E SYNTAX DESCRIPTION
112 |

/* Sets the second-level progress to 0 and the second-level progress message
to "Init step 1". */

// do some work

setProgress(40);
/* Sets the second-level progress to 40, this causes the top-level progress
to be updated to 8 (40 % of 0-20). */

// do some work

setProgress(80, "Init step 2");
/* Sets the second-level progress to 80 and the progress message to "Init
step 2". The top-level message is still "Preparing application" and
top-level progress is now 16. */

// do some work

setProgressInterval("Meshing", 20, 40);
/* Sets the top-level interval to 20 - 40 and the progress message to
"Meshing" at this point the value shown at the top-level will be 20. The
second-level progress is cleared when the top-level interval is changed. */

<call-meshing algorithm>
/* The progress messages and values from the meshing algorithm are shown at
the second-level progress. The top-level progress message will be "Meshing",
but the top-level progress advances from 20 to 40 while second-level
progress advances from 0 to 100. */

setProgressInterval("Solving", 40, 100);
/* The top-level progress message is changed to "Solving" and its value to
40.

<call-solver>
/* Similar to meshing, the progress messages and values from the solver are
shown in the second-level progress bar and the top-level progress value goes
from 40 to 100 while the solver progress goes from 0 to 100. */

closeProgress();

Application Progress Information
Progress information can be displayed in three different ways: in the Status bar, in
a progress form object, and in a dialog box. Application progress information is
controlled by the setProgress methods, which take as their input an integer
between 0 and 100 and an optional message. The integer represents how far the
displayed progress bar has progressed. If no message is supplied, the last message
provided is used. For example:

setProgress(10, "Computing data")
setProgress(25)

This will keep Computing data as the progress message.
 | 113

Use the setProgress method by itself if you want to display custom progress in
the task and status bar. Once you have done this, that progress bar will no longer
be updated by progress information from the COMSOL model, but will be
completely dependent on further calls to setProgress for changes in its value.
Precede it with a call to showProgress to also display the built-in progress dialog
box, see below.
Note that progress information from the COMSOL model will not be shown in
between calls to setProgress. Progress is reset between method calls. If you want
to combine custom steps of progress in methods with built-in model progress,
then use setProgressInterval instead.
With setProgressInterval, you can control the top two levels of progress
information. The second level can be displayed in a progress dialog box and a
progress bar form object, see the code segment below. The second progress level,
controlled by your own custom progress calculation, is connected to the first level
such that one interval at the top level corresponds to the entire second level. Thus
if the interval is 0–50, when the second level progress reaches 40, for example, the
first level will be set to 20 (=(40/100)*50).
Important uses of the method setProgressInterval are listed below:
• Combining calls to the COMSOL model so that you get continuous

progress going from 0–100.
• Computing several studies as well as evaluating several plots. Call
setProgressInterval before each call to the built-in methods with an
interval that approximates how much time each model computation takes.
For example:
setProgressInterval("Computing solution", 0, 80);
model.study("std1").run();
setProgressInterval("Plotting", 80, 100);
useGraphics(model.result("pg3"), "energy_response_plot/graphics1");

• Combining one or more calls to COMSOL model methods with custom
methods that in themselves take significant time. In this case, use
setProgressInterval as in the previous example, followed by your own
custom code with appropriate calls to setProgress. These calls should run
from 0 to 100 as they are controlling the second progress level. For example:
setProgressInterval("Computing solution", 0, 60);
model.study("std1").run();
setProgressInterval("Working", 60, 80);
setProgress(0, "Specific message about what I'm doing");
// ...
// Code that does something
// ...
setProgress(60);
114 |

If you, in a running application, wish to no longer use progress intervals, call
resetProgress to return to the original state. This will also reset progress to 0.

The Progress Dialog Box
A progress dialog box can be used to display application progress as described in
the previous section. The progress dialog has the following options:
• Whether to show model progress or not. When off, no progress from the

model part of the application is forwarded to the progress dialog.
• Whether to show one or two progress levels in the progress dialog.
• Whether to include a cancel button. Cancel also works for user-defined

methods, as it halts execution when the next line in the method is reached.

Use the showProgress methods to enable or disable these options. To close the
progress dialog, use the closeProgress method.
You can show a progress dialog with an indeterminate progress bar that keeps
spinning until you close the progress dialog. Only one progress dialog can be
shown at a time. Use the showIndeterminateProgress methods to display this
progress dialog.

The Progress Bar Form Object
The Progress Bar form object can either show overall application progress
information or customized partial progress information. If you have selected the
Include model progress check box in the Settings window of the Main Window node,
then the overall application progress information becomes available.
When Include model progress is selected, the progress bar will show the same
information as the progress dialog box. That is, one or two levels of progress
information and a cancel button, depending on the settings in the form object.
When Include model progress is cleared, you control the progress bar through the
setProgressBar methods. These take the path name of the progress bar form
object, for example, main/progressbar1.
 | 115

NA

cu

cu

fo

sl

ti
Date and Time Methods

The date and time methods are used to retrieve the current date and time as well
as information on computation times.

ME SYNTAX DESCRIPTION

rrentDate String currentDate() Returns the current date as a
string (formatted according
to the server's defaults) for
the current date.

rrentTime String currentTime() Returns the current time as a
string (not including date, and
formatted according to the
server defaults).

rmattedTime String formattedTime(long timeInMs,
String format)

Returns a formatted time
using the given format. The
format can either be a time
unit or a text describing a
longer format. Supported
formats are:

’hr:min:sec’ which returns
the time in hours, minutes
and seconds in the form X hr
Y min Z sec.

’h:min:s’ which returns the
time in hours, minutes and
seconds in the form X h Y
min Z s.

’detailed’ which returns
the time in seconds and also
includes more readable units
for longer times.

eep sleep(long timeInMs) Sleep for the specified
number of milliseconds.

meStamp long timeStamp() Current time in milliseconds
since midnight, January 1,
1970 UTC.
116 |

get
tio

set
Tim

.

get
Tim

NA
ExpectedComputa
nTime

model.setExpectedComputationTime(String
format)

Returns a string describing
the approximate
computation time of the
application. The string can be
altered by the method
setExpectedComputationTi

me.

LastComputation
e

model.setLastComputationTime(long time) Set the last computation
time, overwriting the
automatically generated time

You can use the timeStamp
method to record time
differences and set the
measured time in ms (a long
integer).

LastComputation
e

String model.getLastComputationTime
(String format)

Returns the last computation
time in the given format. The
format can either be a time
unit or text describing a
longer format. Currently
supported formats are:

hr:min:sec Returns the time
in hours, minutes, and
seconds in the format X h Y
min Z sec.

h:min:s Returns the time in
hours, minutes, and seconds
in the format X h Y min Z s.

detailed Returns the time in
seconds and also includes
more readable units for
longer times. This format is
localized and the output is
translated to the current
language setting.

For example, you can
retrieve the time in ms by
using
getLastComputationTime("

ms").

ME SYNTAX DESCRIPTION
 | 117

N

g

EXAMPLE CODE

The following code overrides the built-in computation time that is available in the
information nodes in the model tree.

long t0 = timeStamp(); // initialize record of computation time

// code and computations

model.setLastComputationTime(timeStamp()-t0); // record computation time

If it is possible to give a rough estimate of the computation time based on the
given inputs of an application, you can update the expected computation time and
display it in an information card stack or a text object. Assume that there is an
integer input called objects that controls the number of objects in a geometry
array and that the computation roughly increases linearly with this number. The
following code adjusts the expected computation time accordingly.

// Number of minutes of computation time per object
int minutes = objects*2.1;
model.setExpectedComputationTime("About " + minutes + " minutes");

Sleep
The code below makes the application idle for 1000 ms.

long delay = 1000;
sleep(delay);

This technique can be used to display graphics in a sequence.
For more information on information nodes and information cards, as well as the
sleep method, see the book Introduction to Application Builder.

License Methods

The license method checks the license number for the current session. This can be
used, for example, to limit the use of an application to one or a few license
numbers.

AME SYNTAX DESCRIPTION

etLicenseNumber String license =
getLicenseNumber()

Returns a string with the license number for
the current session.
118 |

NA

toB

toB

toB

toD

toD

toD

toI

toI

toI

toS

toS
Conversion Methods

Conversion methods are used to convert between the different data types
Booleans, integers, doubles, strings, and arrays. These methods are shorthand
versions of conversion methods in the standard Java libraries.

ME SYNTAX DESCRIPTION

oolean boolean toBoolean(String str) Converts the given string to a
Boolean. (’true’ returns true, all
other strings return false).

oolean boolean [] toBoolean(String[]... strs) Converts all the strings in the
given array to Booleans (’true’
returns true, all other strings
return false) and returns a
Boolean array.

oolean boolean [][] toBoolean(String[][]... strs) Converts all the strings in the
given matrix to Booleans (’true’
returns true, all other strings
return false) and returns a
Boolean matrix.

ouble double toDouble(String str) Converts the given string to a
double.

ouble double[] toDouble(String... strs) Converts all the strings in the
given arrray to doubles and
returns a double array.

ouble double[][] toDouble(String[]... strs) Converts all the strings in the
given matrix to doubles and
returns a double matrix.

nt int toInt(String str) Converts the given string to an
integer.

nt int[] toInt(String... strs) Converts all the strings in the
given arrray to integers and
returns an integer array.

nt int[][] toInt(String[]... strs) Converts all the strings in the
given matrix to integers and
returns an integer matrix.

tring String toString(int value) Converts the given integer to a
string.

tring String toString(double value) Converts the given double to a
string.
 | 119

to

to

to

.

to

to

to

to

to

to

to

NA
String String toString(boolean value) Converts the given Boolean to a
string.

String String toString(double value, int decimals) Converts the given double to a
string with the given number of
decimals.

String String toString(double value, int
decimals,boolean remove)

Converts the given double to a
string with the given number of
decimals with trailing zeros
removed if the Boolean remove is
true. For example, 10.0000001
with number of decimals set to 3
will return 10 rather than 10.000

String String toString(double value, String format) Converts the given double to a
string using the given format
specifier, which is the same as
java.util.Formatter. See the
corresponding Java format string
documentation for more
information.

String String[] toString(double[] darray) Converts all the doubles in the
given array to strings and returns
a string array.

String String[][] toString(double[][] dmatrix) Converts all the doubles in the
given matrix to strings and
returns a string matrix.

String String[] toString(int[] iarray) Converts all the integers in the
given array to strings and returns
a string array.

String String[][] toString(int[][] imatrix) Converts all the integers in the
given matrix to strings and
returns a string matrix.

String String[] toString(boolean[] barray) Converts all the Booleans in the
given array to strings and returns
a string array.

String String[][] toString(boolean[][] bmatrix) Converts all the Booleans in the
given matrix to strings and
returns a string matrix.

ME SYNTAX DESCRIPTION
120 |

NAME

getC

n

getC

getC

getC

getS

w

getS

w

getS

w

getS

w

inse

e
Array Methods

Array methods are used to add, remove, insert, and extract subsets of 1D and 2D
arrays.

SYNTAX DESCRIPTION

olumn String[] getColumn(String[][] matrix, int
column)

Returns a String[] for a
specified column in the matrix.
Useful when values have been
read from a file and only certai
columns should be shown in a
table.

olumn double[] getColumn(double[][] matrix, int
column)

Returns a double[] for a
specified column in the matrix.

olumn int[] getColumn(int[][] matrix, int column) Returns an int[] for a specified
column in the matrix.

olumn boolean[] getColumn(boolean[][] matrix, int
column)

Returns a boolean[] for a
specified column in the matrix.

ubMatrix String[][] getSubMatrix(String[][] matrix,
int startCol, int endCol, int startRow, int
endRow)

Returns a rectangular submatrix
of the input matrix spanning
columns from startCol to
endCol, and rows from startRo
to endRow.

ubMatrix double[][] getSubMatrix(double[][] matrix,
int startCol,int endCol, int startRow, int
endRow)

Returns a rectangular submatrix
of the input matrix spanning
columns from startCol to
endCol, and rows from startRo
to endRow.

ubMatrix int[][] getSubMatrix(int[][] matrix, int
startCol, int endCol, int startRow, int
endRow)

Returns a rectangular submatrix
of the input matrix spanning
columns from startCol to
endCol, and rows from startRo
to endRow.

ubMatrix boolean[][] getSubMatrix(boolean[][] matrix,
int startCol, int endCol, int startRow, int
endRow)

Returns a rectangular submatrix
of the input matrix spanning
columns from startCol to
endCol, and rows from startRo
to endRow.

rt String[] insert(String[] array, String value,
int index)

Inserts an element at position
index in an array and returns th
expanded array.
 | 121

inse

e

inse

e

inse

e

inse

ay
y.

inse

ay
y.

inse

ay
y.

inse

ay
y.

appe an

appe an

appe an

appe an

appe n

appe n

NAM
rt double[] insert(double[] array, double value,
int index)

Inserts an element at position
index in an array and returns th
expanded array.

rt int[] insert(int[] array, int value, int
index)

Inserts an element at position
index in an array and returns th
expanded array.

rt boolean[] insert(boolean[] array, boolean
value, int index)

Inserts an element at position
index in an array and returns th
expanded array.

rt String[] insert(String[] array, String[]
value, int[] index)

Inserts elements in an array at
positions given by the index arr
and returns the expanded arra

rt double[] insert(double[] array, double[]
value, int[] index)

Inserts elements in an array at
positions given by the index arr
and returns the expanded arra

rt int[] insert(int[] array, int[] value, int[]
index)

Inserts elements in an array at
positions given by the index arr
and returns the expanded arra

rt boolean[] insert(boolean[] array, boolean[]
value, int[] index)

Inserts elements in an array at
positions given by the index arr
and returns the expanded arra

nd String[] append(String[] array, String value) Adds an element to the end of
array and returns the expanded
array.

nd double[] append(double[] array, double value) Adds an element to the end of
array and returns the expanded
array.

nd int[] append(int[] array, int value) Adds an element to the end of
array and returns the expanded
array.

nd boolean[] append(boolean[] array, boolean
value)

Adds an element to the end of
array and returns the expanded
array.

nd String[] append(String[] array, String[]
value)

Adds elements to the end of a
array and returns the expanded
array.

nd double[] append(double[] array, double[]
value)

Adds elements to the end of a
array and returns the expanded
array.

E SYNTAX DESCRIPTION
122 |

appe n

appe n

remo

d

remo

d

remo

d

remo

d

remo ay
y.

remo ay
y.

remo ay
y.

remo ay
y.

inse

inse

inse

inse

NAME
nd int[] append(int[] array, int[] value) Adds elements to the end of a
array and returns the expanded
array.

nd boolean[] append(boolean[] array, boolean[]
value)

Adds elements to the end of a
array and returns the expanded
array.

ve String[] remove(String[] array, int index) Removes an element from an
array and returns the shortene
array.

ve double[] remove(double[] array, int index) Removes an element from an
array and returns the shortene
array.

ve int[] remove(int[] array, int index) Removes an element from an
array and returns the shortene
array.

ve boolean[] remove(boolean[] array, int index) Removes an element from an
array and returns the shortene
array.

ve String[] remove(String[] array, int[] index) Removes elements from an arr
and returns the shortened arra

ve double[] remove(double[] array, int[] index) Removes elements from an arr
and returns the shortened arra

ve int[] remove(int[] array, int[] index) Removes elements from an arr
and returns the shortened arra

ve boolean[] remove(boolean[] array, int[]
index)

Removes elements from an arr
and returns the shortened arra

rtRow String[][] insertRow(String[][] matrix,
String[] value, int rowIndex)

Inserts a row into a rectangular
2D array and returns the
expanded array.

rtRow double[][] insertRow(double[][] matrix,
double[] value, int rowIndex)

Inserts a row into a rectangular
2D array and returns the
expanded array.

rtRow int[][] insertRow(int[][] matrix, int[]
value, int rowIndex)

Inserts a row into a rectangular
2D array and returns the
expanded array.

rtRow boolean[][] insertRow(boolean[][] matrix,
boolean[] value, int rowIndex)

Inserts a row into a rectangular
2D array and returns the
expanded array.

SYNTAX DESCRIPTION
 | 123

inse

inse

inse

inse

appe

ns

appe

ns

appe

ns

appe

ns

appe

ns

appe

ns

appe

ns

appe

ns

remo y

NAM
rtRow String[][] insertRow(String[][] matrix,
String[][] value, int[] rowIndex)

Adds rows to a rectangular 2D
array and returns the expanded
array.

rtRow double[][] insertRow(double[][] matrix,
double[][] value, int[] rowIndex)

Adds rows to a rectangular 2D
array and returns the expanded
array.

rtRow int[][] insertRow(int[][] matrix, int[][]
value, int[] rowIndex)

Adds rows to a rectangular 2D
array and returns the expanded
array.

rtRow boolean[][] insertRow(boolean[][] matrix,
boolean[][] value, int[] rowIndex)

Adds rows to a rectangular 2D
array and returns the expanded
array.

ndRow String[][] appendRow(String[][] matrix,
String[] value)

Adds a row to the end of a
rectangular 2D array and retur
the expanded array.

ndRow double[][] appendRow(double[][] matrix,
double[] value)

Adds a row to the end of a
rectangular 2D array and retur
the expanded array.

ndRow int[][] appendRow(int[][] matrix, int[]
value)

Adds a row to the end of a
rectangular 2D array and retur
the expanded array.

ndRow boolean[][] appendRow(boolean[][] matrix,
boolean[] value)

Adds a row to the end of a
rectangular 2D array and retur
the expanded array.

ndRow String[][] appendRow(String[][] matrix,
String[][] value)

Adds rows to the end of a
rectangular 2D array and retur
the expanded array.

ndRow double[][] appendRow(double[][] matrix,
double[][] value)

Adds rows to the end of a
rectangular 2D array and retur
the expanded array.

ndRow int[][] appendRow(int[][] matrix, int[][]
value)

Adds rows to the end of a
rectangular 2D array and retur
the expanded array.

ndRow boolean[][] appendRow(boolean[][] matrix,
boolean[][] value)

Adds rows to the end of a
rectangular 2D array and retur
the expanded array.

veRow String[][] removeRow(String[][] matrix, int
rowIndex)

Removes a row from a 2D arra
and returns the smaller array.

E SYNTAX DESCRIPTION
124 |

remo y

remo y

remo y

remo

remo

remo

remo

inse ar

inse ar

inse ar

inse ar

inse

inse

inse

inse

NAME
veRow double[][] removeRow(double[][] matrix, int
rowIndex)

Removes a row from a 2D arra
and returns the smaller array.

veRow int[][] removeRow(int[][] matrix, int
rowIndex)

Removes a row from a 2D arra
and returns the smaller array.

veRow boolean[][] removeRow(boolean[][] matrix, int
rowIndex)

Removes a row from a 2D arra
and returns the smaller array.

veRow String[][] removeRow(String[][] matrix, int[]
rowIndex)

Removes rows from a 2D array
and returns the reduced array.

veRow double[][] removeRow(double[][] matrix, int[]
rowIndex)

Removes rows from a 2D array
and returns the reduced array.

veRow int[][] removeRow(int[][] matrix, int[]
rowIndex)

Removes rows from a 2D array
and returns the reduced array.

veRow boolean[][] removeRow(boolean[][] matrix,
int[] rowIndex)

Removes rows from a 2D array
and returns the reduced array.

rtColumn String[][] insertColumn(String[][] matrix,
String[] value, int columnIndex)

Adds a column into a rectangul
2D array and returns the
expanded array.

rtColumn double[][] insertColumn(double[][] matrix,
double[] value, int columnIndex)

Adds a column into a rectangul
2D array and returns the
expanded array.

rtColumn int[][] insertColumn(int[][] matrix, int[]
value, int columnIndex)

Adds a column into a rectangul
2D array and returns the
expanded array.

rtColumn boolean[][] insertColumn(boolean[][] matrix,
boolean[] value, int columnIndex)

Adds a column into a rectangul
2D array and returns the
expanded array.

rtColumn String[][] insertColumn(String[][] matrix,
String[][] value, int[] columnIndex)

Adds columns to a rectangular
2D array and returns the
expanded array.

rtColumn double[][] insertColumn(double[][] matrix,
double[][] value, int[] columnIndex)

Adds columns to a rectangular
2D array and returns the
expanded array.

rtColumn int[][] insertColumn(int[][] matrix, int[][]
value, int[] columnIndex)

Adds columns to a rectangular
2D array and returns the
expanded array.

rtColumn boolean[][] insertColumn(boolean[][] matrix,
boolean[][] value, int[] columnIndex)

Adds columns to a rectangular
2D array and returns the
expanded array.

SYNTAX DESCRIPTION
 | 125

appe
ns

appe
ns

appe
ns

appe
ns

appe

ns

appe

ns

appe

ns

appe

ns

remo

ns

remo

ns

remo

ns

remo

ns

remo

ns

NAM
ndColumn String[][] appendColumn(String[][] matrix,
String[] value)

Adds a column at the end of a
rectangular 2D array and retur
the expanded array.

ndColumn double[][] appendColumn(double[][] matrix,
double[] value)

Adds a column at the end of a
rectangular 2D array and retur
the expanded array.

ndColumn int[][] appendColumn(int[][] matrix, int[]
value)

Adds a column at the end of a
rectangular 2D array and retur
the expanded array.

ndColumn boolean[][] appendColumn(boolean[][] matrix,
boolean[] value)

Adds a column at the end of a
rectangular 2D array and retur
the expanded array.

ndColumn String[][] appendColumn(String[][] matrix,
String[][] value)

Adds columns to the end of a
rectangular 2D array and retur
the expanded array.

ndColumn double[][] appendColumn(double[][] matrix,
double[][] value)

Adds columns to the end of a
rectangular 2D array and retur
the expanded array.

ndColumn int[][] appendColumn(int[][] matrix, int[][]
value)

Adds columns to the end of a
rectangular 2D array and retur
the expanded array.

ndColumn boolean[][] appendColumn(boolean[][] matrix,
boolean[][] value)

Adds columns to the end of a
rectangular 2D array and retur
the expanded array.

veColumn String[][] removeColumn(String[][] matrix,
int columnIndex)

Removes a column from a
rectangular 2D array and retur
the smaller array.

veColumn double[][] removeColumn(double[][] matrix,
int columnIndex)

Removes a column from a
rectangular 2D array and retur
the smaller array.

veColumn int[][] removeColumn(int[][] matrix, int
columnIndex)

Removes a column from a
rectangular 2D array and retur
the smaller array.

veColumn boolean[][] removeColumn(boolean[][] matrix,
int columnIndex)

Removes a column from a
rectangular 2D array and retur
the smaller array.

veColumn String[][] removeColumn(String[][] matrix,
int[] columnIndex)

Removes columns from a
rectangular 2D array and retur
the reduced array.

E SYNTAX DESCRIPTION
126 |

remo

s

remo

s

remo

s

matr d
er

matr d
er

matr d
er

matr d
er

NA

con

con

NAME
String Methods

String methods are used to process string variables and string arrays.

veColumn double[][] removeColumn(double[][] matrix,
int[] columnIndex)

Removes columns from a
rectangular 2D array and return
the reduced array.

veColumn int[][] removeColumn(int[][] matrix, int[]
columnIndex)

Removes columns from a
rectangular 2D array and return
the reduced array.

veColumn boolean[][] removeColumn(boolean[][] matrix,
int[] columnIndex)

Removes columns from a
rectangular 2D array and return
the reduced array.

ixSize int[] matrixSize(String[][] matrix) Returns the number of rows an
columns of a matrix as an integ
array of length 2.

ixSize int[] matrixSize(double[][] matrix) Returns the number of rows an
columns of a matrix as an integ
array of length 2.

ixSize int[] matrixSize(int[][] matrix) Returns the number of rows an
columns of a matrix as an integ
array of length 2.

ixSize int[] matrixSize(boolean[][] matrix) Returns the number of rows an
columns of a matrix as an integ
array of length 2.

ME SYNTAX DESCRIPTION

cat String concat(String separator, String ...
strs)

Concatenates the given
varargs-array of strings into a
single string using the given
separator.

cat String[] concat(String colSepar, String
rowSepar, String[]... matr)

Concatenates the given string
matrix (which can be given as a
varargs of rows) into a single
string. Puts colSepar between
values of columns of a row, and
rowSepar between rows.

SYNTAX DESCRIPTION
 | 127

co

fi
.

fi

fi

le

re

sp

.

sp

su

un

NA
ntains boolean contains(String[] strs, String str) Returns true if the given string
array strs contains the given
string str.

nd int[] find(String[] strs, String str) Returns an array with the indices
to all occurrences of str in strs

ndIn int findIn(String[] strs, String str) Returns the index to the first
occurrence of str in strs or -1 if
no match.

ndIn int findIn(String str, String toFind) Returns the first index of str that
is the start of the substring
toFind. If there is no substring
matching toFind in str, -1 is
returned.

ngth int length(String str) Returns the length of the string
str.

place String replace(String str, String orig,
String replacement)

Returns a string where orig has
been replaced by replacement.

lit String[] split(String str) Returns an array of strings by
splitting the given string at spaces

lit String[] split(String str, String separator) Returns an array of strings by
splitting the given string at the
given separator.

bstring String substring(String str, int start, int
length)

Returns a substring with the given
length starting at the given
position.

ique String[] unique(String[] strs) Returns an array of strings with
the unique values in the given
array of strings.

ME SYNTAX DESCRIPTION
128 |

NA

cop

cop

cop

cop

cop

cop

cop

.

cop

equ
Collection Methods

Collection methods are used to copy, compare, sort, and merge variables and
arrays.

ME SYNTAX DESCRIPTION

y String[] copy(String... toCopy) Returns a copy of the given array
of strings, which can also be
specified as a varargs of strings.

y String[][] copy(String[]... toCopy) Returns a copy of the given string
matrix, which can also be
specified as a varargs of rows
(string arrays).

y double[] copy(double... toCopy) Returns a copy of the given array
of doubles, which can also be
specified as a varargs of doubles.

y double[][] copy(double[]... toCopy) Returns a copy of the given
double matrix, which can also be
specified as a varargs of rows
(double arrays).

y int[] copy(int... toCopy) Returns a copy of the given array
of integers, which can also be
specified as a varargs of integers.

y int[][] copy(int[]... toCopy) Returns a copy of the given
integer matrix, which can also be
specified as a varargs of rows
(integer arrays).

y boolean[] copy(boolean... toCopy) Returns a copy of the given array
of booleans, which can also be
specified as a varargs of booleans

y boolean[][] copy(boolean[]... toCopy) Returns a copy of the given
boolean matrix, which can also
be specified as a vararags of rows
(boolean arrays).

als boolean equals(String[] str1, String[] str2) Returns true if all strings in the
given array are equal and they
have the same number of
elements.
 | 129

eq

eq

eq

eq

eq

eq

eq

eq

eq

so

NA
uals boolean equals(String[][] matr1, String[][]
matr2)

Returns true if all strings in the
given matrix are equal and they
have the same number of
elements.

uals boolean equals(int[] ints1, int[] ints2) Returns true if all integers in the
given array are equal and they
have the same number of
elements.

uals boolean equals(int[][] ints1, int[][] ints2) Returns true if all integers in the
given matrix are equal and they
have the same number of
elements.

uals boolean equals(double dl1, double dl2, double
relErrorTolerance)

Compares whether the relative
error of two doubles is within
allowed tolerance using abs((a -
b) / b), where b is the larger of
the doubles (by absolute value).

uals boolean equals(double dl1, double dl2) Same as above, but uses a default
relErrorTolerance of 0.0001.

uals boolean equals(double[] dbls1, double[]
dbls2, double relErrorTolerance)

Compares the relative errors (~
abs((a - b) / b) of elements in
the arrays pairwise and returns
true if all relative errors are
below relErrorTolerance and
the arrays have the same number
of elements.

uals boolean equals(double[] dbls1, double[]
dbls2)

Same as above, but uses a default
relErrorTolerance of 0.0001.

uals boolean equals(double[][] dbls1, double[][]
dbls2, double relErrorTolerance)

Compares the relative errors (~
abs((a - b) / b) of elements in
the matrices pairwise and returns
true if all relative errors are
below relErrorTolerance and
the matrices have the same
number of elements.

uals boolean equals(double[][] dbls1, double[][]
dbls2)

Same as above, but uses a default
relErrorTolerance of 0.0001.

rt sort(String[] strs) Sorts the given array of strings.
NOTE: The array is sorted in
place.

ME SYNTAX DESCRIPTION
130 |

sor

sor

mer

mer

mer

NA
t sort(int[] ints) Sorts the given array of integers.
NOTE: The array is sorted in
place.

t sort(double[] doubles) Sorts the given array of doubles.
NOTE: The array is sorted in
place.

ge merge(String[]... toMerge) Returns an array of strings with all
strings merged from the given
arrays.

ge merge(int[]... toMerge) Returns an array of integers with
all integers merged from the two
given arrays.

ge merge(double[]... toMerge) Returns an array of doubles with
all doubles merged from the two
given arrays.

ME SYNTAX DESCRIPTION
 | 131

132 |

Index

1D array 12, 28, 121

2D array 12, 28, 121

A alert 98, 103

anisotropic diffusion coefficient 30

Application Builder 51

application example

tubular reactor 96

application object 7, 22, 51, 82

app variable 53

classes 53

application tree 51

array 11

methods 121

array input object 60

assignments 8

auto complete 16

automatic solver sequence 44

axisymmetric property 25

B basic data type 26

Blank Model 25

boolean

data type 8, 26

Boolean variable 8

conversion 119

boundary condition 38

built-in method library 82

button

object 61

C C libraries

external 108

card stack object 61

C-code

linking 108

char

data type 8

character

data type 8

check box object 62

choice list 53, 79, 101

methods 79

object 78

classes

application object 53

code completion 16

code generation 16

collection methods 129

color 55

of user interface component 54

combo box object 62

Compile Equations node 42

computation time 118

last 117

Compute 43

COMSOL Desktop 48

COMSOL Help Desk 49

COMSOL Multiphysics 7, 22

confirm 11, 98, 103

contour plot 45

control flow statements 14

conversion

between data types 9

methods 119

Copy as Code to Clipboard 26

creating

feature node 34, 38

model object 24, 48

cut point

data set 30, 83

D data display object 63

data set 45
 | 133

Data Source

class 53, 78

data types

primitive 8

date and time methods 116

debug

methods 108

Declarations node 11, 13, 52

deformation plot 30

Dependent Variables node 42

description 15

parameter 15, 31

variable 15

dialog box 97, 98

diffusion coefficient

anisotropic 30

dimension

spatial 25

disable form object 55, 59, 101

Display Name

for choice list 101

double 9

data type 8, 26

variable conversion 119

E Editor Tools window 32

Electric Currents 47

element size 29, 36

elementary math functions 14

email

class 93

methods 93

preferences 95

email attachment

export 93

report 93

table 93

embedded model 48

enable form object 53, 55, 59, 101

equation

object 63

Excel file 46, 86

exit 107

export

email attachment 93

external C libraries 108

F feature node

creating 34, 38

removing 35, 38

file

methods 83

name 86

open 89

file import object 64

file open

system method 89

file scheme

syntax 83

floating point number 8

for loop 14

form

class 54, 58

list methods 80

form collection object 64

form object 64

class 54, 59

list methods 80

types 60

Fully Coupled node 43

G general properties 55

generating code 16

Geometry node 34

geometry object 34, 35

get 26

global parameter 31

graphics

object 65, 97

view 102, 104
134 |

GUI command

methods 107

GUI related

methods 97

H Heat Transfer in Solids 37, 47

HTML

report 104

hyperlink object 65

I if-else statement 14

image object 66

information card stack object 66

information node 118

inherit

color 55

input field object 67

integer

data type 8, 26

variable conversion 119

Introduction to Application Builder 7,

16, 20, 21, 51, 80, 83, 118

Introduction to COMSOL Multiphysics

20, 22

item

class 54

list methods 80

menu 77

object 77

ribbon 77

toolbar 77

iterative solver 42

Iterator class and method 38

J jagged arrays 11

Java

Documentation, model object class

structure 49

math library 14

programming language 7, 8, 82

syntax 9

unary and binary operators 9

K keyboard shortcut

Ctrl+Space 16

L legend 29, 31

license method 118

line object 69

list box object 69

literals 8

loading

model 48, 83

log object 70

looplevel property 46

M main application class 53, 56

main user interface component classes

54

Main Window

class 54, 57

node 54

material

link 30

tag 80

Materials node 39

math functions 14

maximum value 46

menu

item 77

mesh element size 29, 36

Mesh node 36

message log object 70, 100

message method 103

method 7, 82

get 26

Method editor 82

using 7, 16

Microsoft® Word® format 104

model 48

loading 48, 83

saving 48, 83
 | 135

Model Builder 22

model component 25

model data access 19

model object 7, 22, 39, 51, 82

class structure 49

tag 22

model tag 24

model tree 22

node 38, 39

model utility methods 49, 82

Model Wizard 25, 48

models, working with multiple 48

MPH file 48, 82, 107

multiphysics 47

Multiphysics node 47

multiple models 48

N name

form 51, 53

form object 51, 53

in application object 53

scoping 23

shortcut 13, 51

user interface component 51, 53

nonlinear solver 43

numerical

Derived Values 46

O operating system

methods 89

operators 33

Java 9

model object 33

OS commands 89

P parameter 15, 30, 31, 46

method 15, 21

real and imaginary part 32

parameterized solution 46

physics interface 37, 41

play sound 90

plot

group 31, 103

mesh element nodes 83

point trajectories 83

surface 34, 45

table surface 46

useGraphics 97

Plot Group node 45

point trajectories plot 83

precedence, of operators 9, 33

preferences 107

primitive data types 8

printing

graphics 107

Programming Reference Manual 22, 44,

82, 83

progress 110

dialog box 111, 115

methods 110

progress bar object 70, 112, 114, 115

properties

general 55

property and property values 26

R radio button object 71

ragged arrays 11, 28

real and imaginary part

of parameter 32

Record Code 18, 43

removing

feature node 35, 38

report 96

email attachment 93

HTML 104

Microsoft® Word® format 104

request 99, 103

Results node 45

results table object 71, 101

RGB color 55

ribbon item 77
136 |

S save as 107

saving

model 48, 83

scene light 107

selection input

object 72

set 26

setIndex 26

shortcuts 13, 51

Shortcuts node 13

sleep 118

slider object 73

SMTP 95

solution

parameterized 46

solution data structure 42

Solution node 42

Solver Configurations node 41

solver sequence 41

spacer object 73

spatial dimension 25

special character

Java 49

Stationary Solver node 42

Stationary study step 41

status bar 110

String

data type 10, 26

methods 127

string variable 46

conversion 119

methods 127

strings

comparing 11

concatenating 10

Study node 41

subform object 64

surface plot 34, 45

system methods 89

OS commands 89

T table 46

email attachment 93

object 73, 100

Table node 46

table surface plot 46

tag 53

model 24

model object 22

physics interface 37

text label object 75

text object 74

time 116

title 98

toggle button object 75

toolbar

item 77

object 76

transparency 105, 107

transparent

color 55

U unit 32

object 76

Unit List 53

unit set

methods 79

object 78

Unit System 32

username 89

V variable 21

description 15

name completion 17

video object 76

view

graphics 102, 104

W web page object 77

while loop 15

with statement 15
 | 137

Z zoom extents 103, 107
138 |

	Introduction
	Syntax Primer
	Data Types
	Primitive Data Types
	Assignments and Literals
	Unary and Binary Operators in Methods (Java Syntax)
	Type Conversions and Type Casting
	Strings and Java Objects
	Arrays

	The Declarations Node
	Built-in Elementary Math Functions
	Control Flow Statements
	The IF-ELSE Statement
	The For Statement
	The While Statement
	The With Statement

	Important Programming Tools
	Ctrl+Space for Code Completion
	Recording Code

	Introduction to the Model Object
	Model Object Tags
	Creating a Model Object
	Creating Model Components and Model Object Nodes
	Get and Set Methods for Accessing Properties
	The get Methods
	The set Method
	The setIndex Method
	Methods Associated with Set and Get Methods
	Example Code

	Parameters and Variables
	Accessing a Global Parameter
	Variables

	Unary and Binary Operators in the Model Object
	Geometry
	Removing Model Tree Nodes

	Mesh
	Physics
	Creating and Removing Model Tree Nodes

	Material
	Study
	Modifying Low-Level Solver Settings
	Checking if a Solution Exists

	Results
	Multiphysics
	Working with Model Objects
	The Model Object Class Structure

	The Application Object
	Shortcuts
	Example Code

	Accessing the Application Object
	The Name of User Interface Components
	Important Classes
	The Main Application Class
	Declaration Classes
	Main User Interface Component Classes

	Get and Set Methods for Color
	General Properties
	Example Code

	The Main Application Methods
	Example Code

	Main Window
	Example Code

	Form
	Example Code

	Form Object
	Example Code
	Array Input
	Button
	Card Stack
	Check Box
	Combo Box
	Data Display
	Equation
	File Import
	Form
	Form Collection
	Graphics
	Hyperlink
	Image
	Information Card Stack
	Input Field
	Line
	List Box
	Log
	Message Log
	Progress Bar
	Radio Button
	Results Table
	Selection Input
	Slider
	Spacer
	Table
	Text
	Text Label
	Toggle Button
	Toolbar
	Unit
	Video
	Web Page

	Item
	Example Code

	Data Source: Choice List and Unit Set
	Choice List and Unit Set Methods
	Unit Set Methods

	Form, Form Object, and Item List Methods

	The Built-in Method Library for the Application Builder
	Model Utility Methods
	File Methods
	Example Code

	Operating System Methods
	Example Code

	Email Methods
	Email Class Methods
	Email Preferences
	Example Code

	GUI-Related Methods
	Alerts and Messages
	Example Code

	GUI Command Methods
	Example Code

	Debug Method
	Example Code

	Methods for External C Libraries
	External Method
	Methods Returned by the External Method

	Progress Methods
	Example Code

	Date and Time Methods
	Example Code

	License Methods
	Conversion Methods
	Array Methods
	String Methods
	Collection Methods

	Index

