COMSOL Multiphysics

Physics Builder Manual

s

N COMSOL

Physics Builder Manual

© 1998-2016 COMSOL

Protected by U.S. Patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474;
7,623,991; 8,457,932; 8,954,302; 9,098,106; 9,146,652; and 9,323,503. Patents pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License
Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms
of the license agreement.

COMSOL, the COMSOL logo, COMSOL Multiphysics, Capture the Concept, COMSOL Desktop,
LiveLink, and COMSOL Server are either registered trademarks or trademarks of COMSOL AB. All other
trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products
are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such
trademark owners, see www.comsol.com/trademarks.

Version: COMSOL 5.2a

Contact Information

Visit the Contact COMSOL page at www.comsol.com /contact to submit general
inquiries, contact Technical Support, or search for an address and phone number. You can
also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for
address and contact information.

If you need to contact Support, an online request form is located at the COMSOL Access
page at www.comsol.com/support/case. Other useful links include:

e Support Center: www.comsol.com/support

e Product Download: www.comsol.com /product-download

¢ Product Updates: www.comsol.com/support/updates

e COMSOL Blog: www.comsol.com/blogs

e Discussion Forum: www.comsol.com/community

¢ Events: www.comsol.com/events

e COMSOL Video Gallery: www.comsol.com/video

e Support Knowledge Base: www.comsol.com/support/knowledgebase

Part number: CM020009

www.comsol.com/patents/
http://www.comsol.com/comsol-license-agreement/
http://www.comsol.com/contact/
http://www.comsol.com/contact/offices/
http://www.comsol.com/support/case/
http://www.comsol.com/support/
http://www.comsol.com/product-download/
http://www.comsol.com/support/updates/
http://www.comsol.com/trademarks/
http://www.comsol.com/blogs/
http://www.comsol.com/community/
http://www.comsol.com/events/
http://www.comsol.com/video/
http://www.comsol.com/support/knowledgebase/

Contents

Chapter I: Introduction

About the Physics Builder 12
What Can You Do With the Physics Builder? I2
Where Do | Access the Documentation and Application Libraries?. . . . I3
Overview of the Manual 15

Chapter 2: Physics Builder Design

Overview of the Physics Builder 18
Creating a New Physics Builder File.18
The Physics Builder Window19
The Physics Builder Manager20
Saving and Opening Custom Physics Interfaces. 20
Designing the GUI Layout 21
User Inputs and GUI Components2l
User Input Group GUI Options24
Entering Names and Expressions 29
EnteringNames2
Using Customized Names and Descriptions. 32
Entering Names of Operators and Functions 33
Adding a Delimiter toa String. 34
TensorParser 34
Using Coordinate Systems 38
The Base Vector System 38
The Input Base Vector System.39
Transformation Between Coordinate Systems. 40

CONTENTS |3

Specifying Selections
Selection Section Settings
Selection Terminology .

The Physics Builder Manager
Testing Custom Physics Interfaces
The Development Files
Compiling an Archive .

Working with Builder Archives

Searching in Archives .

Chapter 3: Physics Builder Tools

Building Blocks
Components
Properties

Features . R
Multiphysics Couplings.
Code Editor.

About Links.

Dependencies .

External Resources

Import.
Definitions Library

Components

Creating Components .
Component.

Physics Interface Component .
Usage Condition .

Equation Display .
Component Link .

Extra Dimension Link .

4| CONTENTS

43

.43
. 45

47

. 47
. 48
. 48
. 49
. 51

54

. 54
. 55
. 55
. 55
. 56
. 56
. 56

58

. 58

59

60

. 60
. 6l
. 62
. 62
. 66
. 68
. 69

Properties

Property .

Property Link .
Tensor-Valued Function

Physics and Multiphysics Interfaces
Creating a Physics Interface or a Multiphysics Interface
Physics Interface .

Multiphysics Interface .

Contained Interface.

Physics Interface Component Link .
Auxiliary Settings (Physics Interface)
Disable Allowed Study Types .

Menu .

Menu Item .

Physics Interface — Preview

Multiphysics Interface — Preview.

Features

Generic Feature .

Domain Condition .
Boundary Condition

Global Feature.

Domain Feature .

Boundary Feature

Edge Feature

Point Feature .

Pair Feature.

Contact Pair Feature

Device Model Feature .
Periodic Feature .

Feature Link.

Multiphysics Feature.
Multiphysics Coupling .
Generic Multiphysics Coupling.
Global Multiphysics Coupling .
Domain Multiphysics Coupling.
Boundary Multiphysics Coupling .

72

.72
.73
. 74

75

. 76
.77
. 80
. 8l
. 82
. 83
. 84
. 85
. 85
. 86
. 86

87

. 87
.92
.93
.93
. 94
. 94
. 94
.95
. 95
. 96
.97
.97
. 98
.99

100
101
102
102
103

CONTENTS |5

6| CONTENTS

Edge Multiphysics Coupling .
Point Multiphysics Coupling .
Coupling Type Contribution
Contained Feature .

Auxiliary Settings (Feature Nodes) .
Auxiliary Settings (Multiphysics Couplings) . . .

Geometric Nonlinearity .

Physics Symbol.

User Inputs

Creating User Inputs

User Input .

Selectable Input .

Boolean Input .

User Input Group

Section

Constraint Settings Section .
Material Property.

External Material List .
Socket Input

Socket Output.

Material List.

Feature Input .

Activation Condition .
Additional Requirement .
Allowed Values .
Activating Allowed Values
Integer Values Check .
Regular Expression Check .

Named Group Members .

Variables

Creating Variables

Variables for Degrees of Freedoms .

Variable Declaration

Variable Definition .

Dependent Variable Definition.

Dependent Variable Declaration .

103
103
104
104
104
106
107
108

110
110
112
114
114
115
116
17
118
121
122
122
123
124
127
128
128
129
130
130
131

132
132
133
133
136
139
141

Initial Values.
Hide in GUI.
Disable in Solvers

Degree of Freedom Initialization .

Component Settings
Frame Shape
ODE States Selection .

Equations

Weak Form Equation .
General Form Equation
Coefficient Form Equation .

Shared Quantity Definition .

Constraints
Constraint .
Weak Constraint.

Excluding Selection .

Device Systems
Creating Device Systems .
Device Model .
Port Model .
Device Constants
Device Inputs .
Device.

Input Modifier .
Device Variables .
Device Equations.
Port.

Port Connections

Device Feature

Operators and Functions
Operators .

Functions.

Average .

Integration .

144
145
146
146
147
149
150

151
151
152
154
156

158
158
160
161

162
162
163
164
165
165
165
166
166
167
167
168
168

170
170
170
171
171

CONTENTS |7

8| CONTENTS

Maximum.
Minimum .

Integration Over Extra Dimension .

Physics Areas

Physics Area

Predefined Multiphysics .
Contained Multiphysics Coupling.

Contained Interface (Predefined Multiphysics) . . .

Selections

Selection .

Selection Filter Sequence.

Override Rule Filter.

Selection Component Filter. .
Multiphysics Coupling Selection Filter .

Extra Dimension Selection .

Extra Dimensions
ID Interval .

Multiple ID Intervals .
2D Rectangle .

Auxiliary Definitions

Material Property Group .

Material Property (Auxiliary Definitions) .

Physical Quantity .
Override Rule .

Plot Menu Definition

Equation Display (Auxiliary Definitions) .

Mesh Defaults
Mesh Size.

Study and Solver Defaults
Field
Absolute Tolerance .

Segregated Step .

171
172
172

173
173
174
174
175

176
176
176
177
178
178
179

181
181
181
182

183
183
184
184
185
187
187

189
189

190
191
191
192

Outer Job Parameters .
Eigenvalue Transform .
Study Sequence
Stationary

Time Dependent .

Result Defaults
Plot Defaults

Migration

About Backward Compatibility
Version e
Physics Interface (Migration)
Feature (Migration) . . .
Property (Migration)

Change Type

Rename Inputs.

Migration Links

Documentation

Introduction to Comments and Documentation .

Physics Interface Documentation .

User Documentation .
Comments .

The Documentation Node .

Documentation Text Components .

The Preview Window .

Elements
Element .
GeomDim
Src . .
Array .
Record
String .
Elinv.
Elpric .

Event .

192
193
193
194
194

195
196

198
198
199
200
200
200
200
201
201

202
202
203
203
204
205
206
209

210
210
210
211
211
211
211
212
212
213

CONTENTS |9

10| CONTENTS

DG Wave Element, General Form .
Degree of Freedom Re-Initialization.
Shape Interpolation Element

Chapter 4: Examples of Custom Physics

The Thermoelectric Effect
Introduction to the Thermoelectric Effect .

Equations in the Physics Builder .

Thermoelectric Effect Implementation

Overview.

Thermoelectric Effect Interface — Creating It Step by Step.

Testing the Thermoelectric Effect Interface .

Example Model — Thermoelectric Leg
Introduction to the Thermoelectric Leg Model
Results.

Reference

Modeling Instructions .

The Schroédinger Equation

Introduction to the Schrédinger Equation

Schroédinger Equation Implementation

Overview.

Schrodinger Equation Interface — Creating It Step by Step .

Testing the Schrodinger Equation Interface .

Example Model — Hydrogen Atom
Introduction to the Hydrogen Atom Model.
Results.

Modeling Instructions .

213
214
215

218
218
219

223
223
27
244

247
247
248
249
249

252
252

253
253
255
264

266
266
266
269

Introduction

This guide describes the Physics Builder, a set of tools for creating custom physics
interfaces directly in the COMSOL Desktop.

In this chapter:

* About the Physics Builder

e Overview of the Manual

About the Physics Builder

In this section:

¢ What Can You Do With the Physics Builder?

e Where Do I Access the Documentation and Application Libraries?

What Can You Do With the Physics Builder?

The Physics Builder is a graphical programming environment where application
experts can design tailored physics interfaces through an interactive desktop

environment and without the need for coding.

With the Physics Builder you can deploy the tailored physics interfaces to create your

own products and custom physics interfaces for specific applications.

12 | CHAPTER I: INTRODUCTION

The workflow for creating new physics interfaces is similar to creating a multiphysics

model except that the result is a new user interface rather than a new model.

Building the interface Using the interface

Physics Builder ~ O | | Model Builder >0

- = - =t o - = -
4 magneticFieldFormulation.mphphb (root) 4 & Untitled.mph (root)
m]] External Resources 'o Global

4 @i Building Blocks 4w Component1 (compl)
4 [@] Components = Definitions
4 @ Component1 (makl) 7 Geometry 1

£ UserInput 1 (par.sigma) Materials
A User Input 2 (par.mur) 4 J':. Magnetic Field Foermulation (mfh)

) 4 @ Component 2 (mak2) i Faraday's Law 1
link 5] variable Declaration 1 ()
+=| Variable Declaration 2 (B) m Magnetic Insulation 1
B Initial Values 1
4 .=| Variable Declaration 4 (Jg) = Perfect Magnetic Conductorl
a= Variable Definition 1 (def1) A5 Mesh1
uww Dependent Variable Definition 1 (magneticfield) @ Results
L pL¥ Properties

IF5 Features
.{;3. Multiphysics Couplings
Physics Interface 1 (MagnicField Formulation)
== Feature Link 1 (FaradaysLaw)
== Feature Link 2 (PerfectMagneticConductor)
== Feature Link 3 (Flectricinsulation)
E',—Ej Dependent Variable Declaration 1 {magneticfield)
[Definitions Library
= Migration
E%J Documentation

Figure 1-1: The definition of a new physics interface “Magnetic Field Formulation”: in
the Physics Builder (left) and the vesult in the Model Builder (right).

The Physics Builder window contains a tree that represents a physics interface design
project. Such a project can define anything from a single physics interface to an entire

product with a collection of physics interfaces.

The following chapters describe the tools that you use in the Physics Builder and

provide detailed examples of how to create custom physics.

Where Do I Access the Documentation and Application Libraries?

A number of internet resources have more information about COMSOL, including
licensing and technical information. The electronic documentation, topic-based (or

ABOUT THE PHYSICS BUILDER |

13

context-based) help, and the application libraries are all accessed through the
COMSOL Desktop.

Ifyou are reading the documentation as a PDF file on your computer,
the blue links do not work to open an application or content
referenced in a different guide. However, if you are using the Help

n system in COMSOL Multiphysics, these links work to open other
modules (as long as you have a license), application examples, and
documentation sets.

CONTACTING COMSOL BY EMAIL

For general product information, contact COMSOL at info@comsol.com.

To receive technical support from COMSOL for the COMSOL products, please
contact your local COMSOL representative or send your questions to

support@comsol.com. An automatic notification and case number is sent to you by
email.

COMSOL WEBSITES

COMSOL website www.comsol.com

Contact COMSOL www.comsol.com/contact

Support Center www.comsol.com/support

Product Download www.comsol.com/product-download
Product Updates www.comsol.com/support,/updates
Discussion Forum www.comsol.com,/community

Events www.comsol.com/events

COMSOL Video Gallery www.comsol.com/video

Support Knowledge Base www.comsol.com /support/knowledgebase

14 | CHAPTER I: INTRODUCTION

http://www.comsol.com
http://www.comsol.com/contact/
http://www.comsol.com/support/
http://www.comsol.com/product-download/
http://www.comsol.com/support/updates
http://www.comsol.com/community
http://www.comsol.com/events/
http://www.comsol.com/video/
http://www.comsol.com/support/knowledgebase/

Overview of the Manual

This Physics Builder Manual contains information that helps you to get started with
creating custom physics using the Physics Builder in the COMSOL Multiphysics
product. The information in this guide is specific to this functionality. Instructions on
how to use COMSOL in general are included with the COMSOL Multiphysics
Reference Manual.

As detailed in the section Where Do I Access the Documentation and
m Application Libraries? This information can also be searched from the
COMSOL Multiphysics software Help system.

TABLE OF CONTENTS AND INDEX
To help you navigate through this guide, see the Contents and Index.

DESIGN
The Physics Builder Design chapter has an overview of the tools available and includes
information about Designing the GUI Layout, Entering Names and Expressions,

Using Coordinate Systems, Specifying Selections, and The Physics Builder Manager.

TOOLS
The Physics Builder Tools chapter has a description of each of the tools in the Physics

Builder that allow you to create custom physics interfaces for specific application.

EXAMPLE

The Examples of Custom Physics chapter provide two examples to show how to create

custom physics interfaces: The Thermoelectric Effect and The Schrodinger Equation.

OVERVIEW OF THE MANUAL | |5

16 | CHAPTER I: INTRODUCTION

Physics Builder Design

The information in this chapter is useful at various stages of the design of the

physics interfaces.

In this chapter:

Overview of the Physics Builder
Designing the GUI Layout
Entering Names and Expressions
Using Coordinate Systems

The Physics Builder Manager

18 |

Overview of the Physics Builder

The Physics Builder is a graphical programming environment where you can design
custom physics interfaces using an interactive desktop environment without the need

for coding.

In this section:

¢ Creating a New Physics Builder File

e The Physics Builder Window

* Saving and Opening Custom Physics Interfaces

¢ The Physics Builder Manager

This manual is a companion to the COMSOL Multiphysics Reference
Manual, where extensive information is available for some of the

concepts and features used in the Physics Builder. See Where Do I Access

[

the Documentation and Application Libraries? to learn how to use
topic-based help in COMSOL Multiphysics.

CHAPTER 2:

Creating o New Physics Builder File

I Open COMSOL.

2 Open the Preferences dialog box. Select it from File>Preferences (Windows users) or
Options>Preferences (Mac and Linux users).

3 Click Physics Builder and select the Enable Physics Builder check box. Click OK.

4 Seclect New from the File menu.

5 On the New page under Physics, click the Physics Builder button () to open the
Physics Builder.
The COMSOL Desktop then contains a Physics Builder window with a tree similar
to the Model Builder.

From the main Physics Builder toolbar or from the Windows menu (Linux and Mac),
you can open The Physics Builder Manager where you can administer testing of

Physics Builder files and deployment of entire Physics Builder packages.

PHYSICS BUILDER DESIGN

The Physics Builder Window

Physics Builder

- I EE

4 [Z] Untitled.mphphb froot)

m]] External Resources
4 @& Building Blocks
[®] Compenents
£F Properties
55 Features
.{;3. Multiphysics Couplings
4 [Definitions Library
[l Physics Areas
& Selections
N.,': Extra Dimensions
[Auziliary Definitions
= Migration
E‘_éj Documentation

The Physics Builder window displays the tree containing the sequence of all physics and

building blocks within a file.

toolbars.

when the interface is complete.

To add new functionality, right-click a node in the tree and choose a functionality

from the context menu or click a corresponding button in the Physics Builder

It is only possible to add new physics interfaces to the root of the tree. Each new

node represents a new physics interface that can be chosen from the Model Wizard

THE PHYSICS BUILDER BRANCHES AND SUBBRANCHES

External Resources

The External Resources branch is useful to avoid reimplementing features, properties

or components. Import previously created items stored in a different builder file. All

items that you implement under the Building Blocks branch in a builder file can be

used by any other builder file that imports it.

Building Blocks

Use the Building Blocks branch to create a library of Components, Properties,

Features, and Multiphysics Couplings that you can build physics interfaces (including

multiphysics interfaces). The Physics Builder Tools chapter describes the features and

subfeatures available in detail.

OVERVIEW OF THE PHYSICS BUILDER ‘

19

20 |

Definitions Library

The Definitions Library contains definitions of material property groups, physical
quantities, and other definitions that are used by but are not part of a physics interface.
There are these subbranches: Physics Areas, Selections, Extra Dimensions, and Auxiliary

Definitions.

Migration

Migration, or backward compatibility, has to be considered in situations when you
make changes to your physics interface design but still want users of the interface to
use COMSOL model files created in the old Version of the interface.

Documentation

The need for internal Documentation (comments about implementation and for
simplifying extending and maintaining the implementation) and external
documentation (user documentation and context help) varies. The Physics Builder
includes tools for creating documentation for both internal and external

documentation. See Introduction to Comments and Documentation.

The Physics Builder Manager

Use The Physics Builder Manager to manage testing, compilation, and comparison of

your Physics Builder files.

To open this window, click Physics Builder Manager ({5}) on the main toolbar
(Windows) or, from the main menu, select Windows>Physics Builder Manager (Linux,

Mac). On the toolbar, click again to close the window.

Saving and Opening Custom Physics Interfaces

Saving Physics Builder files works in the same way as ordinary model files (*.mph)
except that it has the extension mphphb. Opening a file is also similar to opening
MPH-files, but select Physics Builder File (*.mphphb) from the list of file types in the Open
dialog box.

* See The Physics Builder Manager for more information about
organizing development files.
Q * Saving COMSOL Files in the COMSOL Multiphysics Reference
Mannal

CHAPTER 2:

PHYSICS BUILDER DESIGN

Designing the GUI Layout

The design of the GUT layout of a feature or a property is an important and sometimes
complex task. You often have to compromise between a simple layout and flexibility in
the functionality. Each User Input node often represent a GUI component (or
widget), for example fields, combo boxes, and tables. Based on the declaration of a
user input, there is often only one possible choice of GUI component. In situations
where there are several possible choices, you have the option to choose. You always

find such choices under the GUI Options section of a User Input node.

In contrast to user inputs, which controls what GUI components you see, the User
Input Group node controls when and where to display the GUI components. As an
example, the user input group can list the user inputs you want to see under a specific

section. This is an option in the GUI Options section of a User Input Group.
In this section:

e User Inputs and GUI Components

e User Input Group GUI Options

. Use this section in combination with the features described in the User
I_E| Inputs section.

User Inputs and GUI Components

The settings under the Declaration section often determines what GUI component you

see when the user input is visible.

. Use this section in combination with the features described in the User
ril Inputs section.

DESIGNING THE GUI LAYOUT | 2l

2 |

CHAPTER 2:

SINGLE-ARRAY INPUTS

The table below summarizes the behavior for single-array inputs (option Array type sct

to Single).

DIMENSION ALLOWED VALUES GUI COMPONENT
Scalar or Ix| Any field (text box)
Scalar or Ix| From list Combo box

Vector (3x1) Not applicable Table with 1-3 rows, depending on the option Vector

component to display.

Matrix (3x3) Not applicable Table with 1-3 rows and 1-3 columns, depending on

the option Matrix component to display. You also get
a combo box for matrix symmetry.

Boolean Not applicable ~ Check box. Note that there is a special node for

creating Boolean inputs.

Custom Not applicable ~ Table with rows and columns representing the

specified dimension. If it represents a square matrix,
you can specify a symmetry with the option Matrix
symmetry for square matrix.

Changeable Not applicable Single column table with the possibility to add rows.

Depending on the dimension of the input, you get different options in the GUI Options

section. You find the available options below:

Hide user input in GUI when inactive. The logic controlling the user input determines
that it is inactive, the input’s GUI component disappears from the layout. This is

not necessary if the user input is a member of a user input group that can disappear.
Show no description. Removes the label above the GUI component.
Show no symbol. Removes the symbol to the left of the GUI component.

Add divider above the user input. Places a horizontal line above the GUI component,
possibly with a descriptive text.
Show no coordinate labels. For spatial vectors, by default you get the coordinate

labels in the left-most column. Selecting this option removes that column.

Vector components to display. Controls what components of a spatial vector you want
to display in non-3D geometries. You can choose between All, In-plane, and

Out-of-plane.
Matrix components to display. Same as above but for spatial matrices.

Matrix symmetry for square matrix. For non-spatial, square matrices you can force a

matrix symmetry with this option. The choices are Diagonal, Symmetric, Anisotropic,

PHYSICS BUILDER DESIGN

and Symmetric, fixed diagonal, and they control the cells that the user can edit. For

Symmetric, fixed diagonal, the diagonal is fixed to the default values, and the user can

only edit the oftf-diagonal elements.

DOUBLE-ARRAY

INPUTS

Double-array inputs are far more complex to design GUI components for, and some

combinations are not supported. The table below summarizes the behavior for the

supported double-array inputs (option Array type set to Double).

OUTER DIM. INNERDIM. ALLOWED VALUES GUI COMPONENT
Vector (3xl) Scalar or Any Behaves as a single-array vector
IxI|
Vector (3xl) Scalar or From list Several combo boxes when the input is a
Ix1 member to a special input group, see User
Input Group GUI Options. Otherwise,
behaves as a single-array vector with
restrictions what you can enter in the
table cells.
Matrix (3x3) Scalar or Any Behaves as a single-array matrix
IxI|
Vector 3xl) Boolean Not applicable Several check boxes when the input is a

member to a special input group, see User
Input Group GUI Options. Otherwise,
behaves as a single-array vector with
restrictions what you can enter in the
table cells.

For double-array inputs, you might get an error when you try to use an

unsupported combination. In other situations, especially when the inner

dimension is a scalar, you can get a component, but with an unpractical

m

behavior. For example, when the outer dimension is fixed but nonscalar,

the inner dimension is scalar, and Allowed values is set to From list. Then

the input behaves as the single-array version, but with restrictions on what

you can enter in the table cells.

DESIGNING THE GUI LAYOUT

23

There are fewer GUT options for double-array inputs, but those supported are identical

to the options for single-array inputs.

@l‘ User Input

User Input Group GUI Options

You can use the User Input Group for two main purposes: controlling GUI layout and
putting the same activation conditions on several user inputs. The latter is usually a
consequence when implementing the first. Grouping of user inputs also makes it
possible to define the section name and to create help contents for the section. The GUI
layout option under the GUI Options section controls the behavior of a user input group.
The available layouts are Group members below each other (the default), Group members
placed in a stack, Create a widget for each vector component, Radio buttons from first
user input, others interleaved, Group members define columns in table, or Group members

define a section.

Use this section in combination with the features described in the User

Input Group section.

GROUP MEMBERS BELOW EACH OTHER
The GUI components that each group member represents appear below each other.
The member can be another group, so the entire layout of that group gets a spot in

this sequence. The figure below shows a schematic drawing of this layout.

Section

GUI component(s) from member |

GUI component(s) from member 2

GUI component(s) from member 3

Figure 2-1: A schematic of the layout of the option “Group members below each other”.

24 | CHAPTER 2: PHYSICS BUILDER DESIGN

If any of the user inputs or user input groups has the option Hide user input in GUI when
inactive selected, it gets hidden when inactive. It is still present, and its presence can be
noted because it occupies a small empty space in the layout. If you only have one
hidden member like this, you hardly notice it, but if there are several such hidden
members in a row, you get a clearly visible empty space. You should then use the option

Group members placed in a stack (see below).

GROUP MEMBERS PLACED IN A STACK

The GUI components of each member are placed in separate sublayouts, called cards.
Each card can appear and disappear as a unit, giving the effect that a part of the layout
changes instantly. The activation condition on each member controls when its card
appears or disappears. Each card can contain several GUI components and other cards
depending on the type of member it corresponds to. In this way, you can create an
advanced nested dynamic GUI. See below for a schematic drawing of this type of
layout.

Section

GUI component(s) from member 3

Figure 2-2: A schematic of the layout of the option “Group members placed in a stack”.

GROUP MEMBERS DEFINE A SECTION
The simplest and one of the most important GUI layouts is the section layout. You use
it when you want specify what members that belong to a certain section. You specify

the title of the section in the Description ficld.

. The recommended way of creating a section is to use the Section node
I_il instead of the User Input Group node.

DESIGNING THE GUI LAYOUT

25

2 |

If you do not specify a section, there is a default section that can be good enough for
simple layouts. There are several situations when the default section is never generated:
e When you want more than one section, you must specify all sections.

* When you have at least one Constraint node in your feature. The constraint usually
adds a special section for weak constraints and constraint type selection, so you must

specify all other sections as a section group.

As rule of thumb, always add a section if you do not see the user inputs you expect.

The section that constraint nodes usually adds is not always shown. You

must show advanced physics options to see it.

CHAPTER 2:

CREATE A WIDGET FOR EACH VECTOR COMPONENT
You can use this layout if you wish to place a GUI component sequentially for each
component of a vector-valued user input. The user input can either be a single-array

vector or a double-array vector with a scalar or Boolean inner type.

A typical example is if you want to activate each vector component value with a check
box. Then you create one double-array user input with the outer dimension set to
vector and the inner dimension set to Boolean, and one single-array user input as a
vector. Put both these user inputs as member to a group using this layout, and you get

a layout like the screenshot below.

¥ Section
[Check box, X component
Vector, X component:

0
[] Check box, ¥ compaonent
Vector, ¥ component:

0
[C] Check box, Z component
Vector, Z component:

0

Figure 2-3: A screen shot of a window created with the layout option “Create a widget for
each vector component.”

PHYSICS BUILDER DESIGN

RADIO BUTTONS FROM FIRST USER INPUT, OTHERS INTERLEAVED

Use this option when you want two or more radio buttons (option buttons) that
control the visibility of other user inputs or groups. The first user input must have a set
of valid values, each one representing one radio button. The number of group
members except the first one has to be equal to the number of allowed values in the
first user input. Similar to the previous GUI layout, you get the GUI components of a
group member after each radio button. It is also common that you activate the group
members depending on the value of the radio-button input. See Figure 2-4 that
displays an example with two radio buttons. It needs three user inputs, where the first
one has two allowed values.

¥ Section
@ Choice 1
Choice 1:

0

Choice 2
Choice 2:
0

Figure 2-4: A screen shot of a window created with the layout option “Radio buttons from
Ly)
[first user input, others interleaved.”

GROUP MEMBERS DEFINE COLUMNS IN A TABLE

Use this option when you want to combine several user inputs into a table GUI
component, where each user input represents a column in the table. This requires that
the user inputs are vectors and have the same dimension. In the Table height field you

set the height of the table in pixels. You can control the behavior of the table through
a couple of check boxes listed in the table below:

CHECK BOX DESCRIPTION

Automatically add new rows Select if you always want an empty
row below the entered ones

Rows can be added Select to enable adding of rows

Rows can be deleted Select to enable deleting of rows

Rows can be moved up and down Select to enable row content to be
movable

Table data can be saved to file and loaded Select to add toolbar buttons for
saving and loading table content

DESIGNING THE GUI LAYOUT ‘

27

The table columns get their headers from each user input if the Table headers list has
the option Use user input descriptions. Choose Specify to enter them manually in the
table that pops up below the list. The last table controls the settings for each column,

where you specify the column settings in the corresponding row. The table below
summarizes the available options.

OPTION DESCRIPTION

Widths The initial width of the column

Editable Selected means that the user can edit the column

Variable The column must represent unique and valid variable names
Expression The values must be an expression without syntax errors
Synchronized You get fields below the table for easier typing

ATTACH ACTIVATION ON GROUP MEMBERS

Selecting this option means that all activation conditions under this group will be
attached to the list of activation conditions for all members. The attachment will be
done when using the interface in the Model Builder and can be used to do
modifications of existing user input activations that you either cannot access or want

to do selectively for a certain feature sharing a component with other features.

@t User Input Group

28 | CHAPTER 2: PHYSICS BUILDER DESIGN

Entering Names and Expressions

In this section:

e Entering Names

* Using Customized Names and Descriptions
* Entering Names of Operators and Functions
* Adding a Delimiter to a String

e Tensor Parser

. Use this section in combination with the features described in the Physics
I_il Builder Tools chapter.

Entering Names

All variable names that you write in an expression are first assumed to be a variable

defined by the physics interface, which means that it has a physics interface scope. If
no variable is found with that scope, it checks the component scope and finally the root
scope. If you want to access a variable in the root scope, but you are unsure if it exists
in any other scope, enter the variable fully scoped, for example, root . lambda to access

the eigenvalues from the solver.

You might also want to access the value of a user input in your equations without
adding it as a variable. The syntax for this is to add par. before the input parameter
name. For example, to access the input parameter sigma in an expression, type
par.sigma. The par prefix is part of a name generation syntax that the builder
interprets. This syntax is built up by a sequence of dot-separated items, where each
position has a special meaning. The full syntax description can be defined by the

following rule
[<prefix>].<identifier>.[<input>]*.[<integer>]*

All items within brackets mean that you do not have to specify them, and in some cases
a default is used instead. An asterisk (*) means that you can write zero or several items.
The par prefix in the mentioned above, is an example when the identifier position is a

user input, and the value of that user input replaces the entire sequence. There are

ENTERING NAMES AND EXPRESSIONS

29

30 |

other similar reserved prefixes for accessing different scopes and specifying operators.

You find the complete list in the following table:

PREFIX DESCRIPTION EXAMPLE

phys Replaced by the physics interface scope. phys.A => root.compi.es.A
Under a coupling feature the phys
prefix can be appended with a coupling
type; see Generic Multiphysics
Coupling

comp Replaced by the model component comp.u => root.compi.u
scope.

root Used as is to define root scope. root.h => root.h

coord Identifies the coordinate and is used coord.1 => X
together with number-dot. Can be g.coord.2 => Yg
prefixed by s, m, g, or M corresponding
to the coordinate in the spatial, material,
geometry, or mesh frame, respectively.

item Replaced by a scope that represents the item.V0 =>
full path to the feature or property. root.compl.es.gnd1.v0

parent Replaced by a scope that represents the parent.V0 =>
full path of the parent to the feature or ~ root.compi.es.V0
property.

dep The subsequent identifier is a dependent dep.u => root.comp1.u2
variable, and the true name replaces the
entire sequence.

order The subsequent identifier is a dependent order.u => 2
variable, and shape order of the variable
replaces the entire sequence.

par The subsequent identifier is an input, par.sigma => 12[S/m]
and the value of that input replaces the
entire sequence.

mat The subsequent identifier is a material mat.rho =>
property, and the material property root.compl.mat2.def.
value, either from the material or the rho(root.comp1.T)
user defined, replaces the sequence.

arg The subsequent identifier is a arg.C => phys.C2 =>
component parameter. The parser root.comp1.ht.C2
substitutes the argument with the
parsed result of the value.

CHAPTER 2: PHYSICS BUILDER DESIGN

PREFIX

DESCRIPTION

EXAMPLE

map

rot

minput

entity

loop

dev

sys

The subsequent identifier is an
extrusion operator of a pair or a
periodic condition.

map.nsign is a variable for the normal
sign, defined as | on all boundaries. To
change the normal direction on some
boundaries, redefine this variable to be
-1 to flip the normal direction.

The subsequent identifier defines a
rotation of a vector or matrix variable in
a periodic condition.

The subsequent identifier is a valid
model input variable name, and the
value of the model input parameter
replaces the entire sequence.

The subsequent identifier is a valid get
method from the current feature or
property. Valid methods are only those
without arguments and that return a
string value.

Modifies the variable name so it
represents a unique name for the
current pass in a loop.

Replaced by the current device scope.

Usually replaced with the scope of the
coordinate system currently selected in
the Coordinate system list in the
Settings window of the feature instance.
In other cases it can represent more
complex expressions; see The Input
Base Vector System for more details.

map.src2dst(c1) =>
root.compi.src2dst_pi(c1)

rot.src2dst(A) =>
{cos (30)*Ax+sin(30) *Ay,sin(
30) *Ax-cos(30) *Ay

minput.T => root.compi1.ht.T

entity.tag => init1

entity.name =>
Initial value 1

loop.D =>
root.comp1.di.D_c1

dev.v =>
root.compi.cir.R1_v

Ssys.T => sys2.T

If the prefix is left out, it is assumed to be phys for variable names, but not for

dependent variables, operators, and functions (see below). After the identifier there

can be a trailing sequence of integers. This sequence represents indices of a tensor

clement. Assume that there is a 3-by-3 tensor A with physics interface scope, and that

it is used in a 2D axisymmetric model where the coordinate names are r, phi, and z.

If you type

A.1.2

ENTERING NAMES AND EXPRESSIONS

3

in a builder expression, it becomes
Arphi

in the 2D axisymmetric model. The standard naming convention for components of a
vector or matrix is a base name concatenated with the coordinate names. You can

override this naming convention using the Component Settings node.

Dependent variables are treated differently. Firstly, they always have component scope,
so unscoped names get this scope. Secondly, the user can change their names, so you
always specify them by their default name. The physics scope lookup has precedence
over the default-name lookup of dependent variables, so if you want to use a
dependent variable that has the same default name as the name of a variable, you must
use the dep prefix.

Using Customized Names and Descriptions

In the Component Settings node, you can define custom names and descriptions by
selecting different options in the Create components by list. The first option, Appending
coordinates to the name, is the default behavior for spatial tensors that concatenate the

tensor name with the coordinate name for each tensor component:

Axy
The option Appending indices to the name, concatenate the tensor name with the tensor
index:

A12

This is the default for non-spatial tensors. Use the option Specifying a template, if you
have a certain naming convention for the i:th component. For example, assume that

you want to the use following names and descriptions for a velocity vector:

NAME DESCRIPTION
x_vel x-velocity
y_vel y-velocity
z_vel z-velocity

Then you specify the following template for the variable name

str.append(coord.i,_vel)

and for the description

#coord.i#-velocity

32 | CHAPTER 2: PHYSICS BUILDER DESIGN

If you have a tensor with up to 4-indices, use the identifiers j, m, and n to access the
other indices.

It is also possible to concatenate parts with str.append operator. The operator
appends all its argument to generate the final component name. Assume that a feature
has a user input called Port that has the value 2. The following template

str.append(phys.R,par.Port,par.Port)
then generates the following component name (root.comp1.ph is the physics scope)
root.comp1.ph.R22

The final option is Specifying each component separately. Here you type the name and
description for each component in the table below the list. You can use the dot (.) and
hash (#) symbols to use the coordinate names. You can implement the example above
with the following component settings:

COMPONENT NAMES COMPONENT DESCRIPTIONS

str.append(coord.1,_vel) #coord.1#-velocity
str.append(coord.2,_vel) #coord.2#-velocity
str.append(coord.3,_vel) #coord.3#-velocity

E}‘ Components

Entering Names of Operators and Functions

When you want to enter a name to an operator or function almost the same rules apply
as for variable names. The only difference is the default scope. For variable names, the
default scope is always the physics scope, represented by the phys prefix. When you
declare a new operator or function, the default prefix is also phys, but not when you
use the operator or function in an expression. Then the default is the comp prefix,
which is interpreted as component scope. The reason is simply that it is most common
that you declare new operators with physics scope, but not when you use a function.
Then you often refer to functions that are unscoped (for example, sin, cos, exp,
gradient, and normalize). In the Model Builder, all unscoped names are first

ENTERING NAMES AND EXPRESSIONS

33

34 |

interpreted using component scope, then root scope, so it is possible to change the
meaning of the function name sin if you want.

{i Operators and Functions

Adding a Delimiter to a String

The str.delimited operator creates a string by concatenating the arguments
separated by the delimiter. You can use this operator in expressions in Variable
Definitions, Components Settings, and so on. The delimiter can be any string, while
the arguments can be string literals, variables, user inputs, or other commands (such as
entity.tag). In the case of vector or matrix variables, each component is considered

as a separate argument. The str.delimited operator has the following syntax:

str.delimited(<delimiter>, <arguments>...)

. Use this section in combination with the features described in the Physics
|_£| Builder Tools chapter.

CHAPTER 2:

Tensor Parser

All Expression ficlds supports tensor variables and operators for tensors. If you, for
example, want the cross product between two vectors, simply type

AxB

directly in the Expression ficld. The symbol for the cross product is among the standard
mathematical symbols defined by the Unicode standard. The other special symbols
used by expressions are the (inner) dot product, A-B, and the nabla operator, VA.
Press Ctrl+Space to get a list of the supported operations that includes any special
characters. The system font must support the special symbols to display them properly;
otherwise, the expression might not look correct. It is always possible to copy-paste
them from an editor that supports Unicode input or directly from a Unicode character
map.

PHYSICS BUILDER DESIGN

There are also some functions that you can use to perform tensor operations — for

example, the transpose of a matrix or the inverse of a matrix.

= Builder Tools chapter.

Use this section in combination with the features described in the Physics

The following table lists the operator symbols and operations that the tensor parser

supports.

OPERATION

PRECEDENCE

EXAMPLE

Cross product

Inner dot product
Double dot product
Gradient

Tangential gradient
Divergence

Curl

Tangential curl

Inverse of a matrix
Determinant of a matrix
Transpose of a matrix
Normalize a vector
Norm of a vector

Sum over last index
Maximum element in a vector

Minimum element in a vector

Same as multiply
Same as multiply
Same as multiply
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

Function

axb orcross(a,b)
a-b ordot(a,b)
a:b

Vaor gradient(a)
gradientT(a)

V-a ordivergence(a)
V xa orcurl(a)
curlT(a)
inverse(a)
determinant(a)

aT or transpose(a)
normalize(a)
norm(a)

sum(a)

maxElem(a)

minElem(a)

ENTERING NAMES AND EXPRESSIONS

35

OPERATION

PRECEDENCE

EXAMPLE

Fill with variable to size

Specify elements of vector
Specify elements of matrix

Expand elements to list of
arguments

Force symmetry in matrix

Zero out in-plane
components of a spatial
vector

Zero out out-of-plane
components of a spatial
vector

Multiply by volume
integration factor

Function

Variable name

Variable name

Variable name

Function

Function

Function

Function

array(a,{2,2})
{{a,a},{a,a}}
array(a,"3x1") = {a,a,a}

{1,2,3,4,5}

{{11,12},{21,22}}

Letr = {x,y,z}
f(r.1..n) becomes f(x,y,z)
g(r.1..2) becomes g(x,y)

Let M be a matrix that is
symmetric, M = {{u*u, u*v,
u*w}, {v*u, v*v, v*w},
{w*u, w*v, w*w}}. Symmetry
cannot be detected because v*u
is different than u*v by string
comparison. The symmetric
operator forces symmetry:
symmetric(M) = {{u*u,
u*v, u*w} , {u*v, v*v,
v*w} , {u*w, v*w, w*w}}
Letr = {r,phi,z} in 2D axial
symmetry

zeroInPlane(r) = {0,0,z}
Letr = {r,phi,z} in 2D axial
symmetry
zeroOutOfPlane(r) =
{r,0,z}

integrand(a+b) becomes:
(a+b)*2*pi*r in 2D axial
symmetry

(a+b)*iel.detInvT for an
infinite element domain

PHYSICS BUILDER DESIGN

OPERATION PRECEDENCE EXAMPLE
Evaluate physical constants, Function Let TO be a global parameter set
global parameters, and units to 300K,
to numerical values..You can evalConst(k_B_const*T0/
use this operator with e_const) becomes
conditional expressions to 0.025851997154882865
check if a parameter is larger

. evalConst(1[um]) becomes
than a certain value, for . L

1e-6 if the base unit is meter.

example.
commaDerivative Function Let u be a vector-valued

dependent variable with
components u, v, and w and the
coordinate names X, Y, and z.
Then

commaDerivative(u) =
{{uxilJyluz}! {VX,Vy,VZ},
{wx,wy,wz}}

The double dot product is a summation over two indices:
b = i
ab = a;;b

Unfortunately, there are two definitions of the double dot product, and the above is
referred to the Frobenius inner product or the colon product. The other definition has

flipped order for the indices in the second factor
ji
ab = q; jb]
The former definition is used by the tensor parser.

The gradient operator can be suffixed with s, m, g, or M to specify in regard to which
coordinate variables (spatial, material, geometry, or mesh frame, respectively) it should
take its derivatives. Example V.m.u is the gradient of the variable in the material
frame.

ENTERING NAMES AND EXPRESSIONS

37

Using Coordinate Systems

When creating a feature or property, you can define two coordinate systems: the Base
Vector System and the Input Base Vector System.

In this section:

e The Base Vector System
e The Input Base Vector System

¢ Transformation Between Coordinate Systems

. Use this section in combination with the features described in the Physics
|_i| Builder Tools chapter.

The Base Vector System

This is the system a feature declare its variables in. Typically, this only has an effect if
the variable is a spatial tensor (for example, a vector with length 3). It also has an effect
for weak form equations, where the base vector system can define the volume factor
for the weak form integration. The most common choice is to use the coordinate
system represented by the current frame used by the feature. In the Base vector system

lists, this is the option Frame system compatible with material type.

@l About Frames in the COMSOL Multiphysics Reference Manual

The table below summarizes all possible options for the Base vector system list.

OPTION DESCRIPTION

Frame system compatible Uses a coordinate system that represents the frame
with material type compatible with the selected material type for the feature.

Selected input coordinate This options activates a coordinate system selection list for

system a feature, where the user can choose between
user-defined systems and a global system that corresponds
to the feature’s frame.

Spatial frame system Uses the coordinate system for the spatial frame no
matter what the feature’s frame is.

38 | CHAPTER 2: PHYSICS BUILDER DESIGN

OPTION DESCRIPTION

Material frame system Uses the coordinate system for the material frame.
Mesh frame system Uses the coordinate system for the rarely used mesh
frame.

Geometry frame system Uses the coordinate system for the geometry frame.

The feature determines its frame from the Frame type list, which has the options
Material, Spatial, or Selectable by user. The Material option corresponds to the material
frame, and the Spatial (typically fluids) option corresponds to the spatial frame. For the
Selectable by user option, the frame type depends on user choice or material setting

during a Model builder session.

When you select the base vector system for a feature, it acts as a default for all variables,
user inputs, weak form equations, and constraints declared by the feature. If necessary,
it is possible to override this default by changing the setting in the Base vector system
list under the Advanced section of any of these nodes. Under the same Advanced section
for variables, you can also set the tensor type, individual base vector system, and base
vector type for each tensor index. In the Tensor type list, choose the type of vector: a
Normal tensor, a Tensor density, or a Tensor capacity. Tensor densities and capacities are
affected by the scaling of the unit volume during a change of base vector system. For
nonscalar quantities, use the Base vector system column in the table to set individual

base vector systems for each tensor index. In the Type of base vector column, set the

type to Covariant or Contravariant for cach index.

By default, all tensor indices are contravariant, and this setting is only
I'i-l" important for nonscalar, spatial tensors in non-orthonormal coordinate

systems.

The Input Base Vector System

This is the system used by all spatial (length 3) vector-valued and tensor-valued user
inputs. The options in the Input base vector system list are the same as The Base Vector
System list. When the settings differ between these two lists, everything a user enters
for a user input, is automatically transformed to the system defined by the Base vector
system list. The transformation matrices used by the transformation can be accessed

through a special scope syntax, sys.<variable>. There are six variables defined by

USING COORDINATE SYSTEMS

39

40 |

a coordinate system that you can access using this scope. These are summarized in the
table below:

VARIABLE SYMBOL DESCRIPTION BASE VECTOR SYSTEM
T i Transformation matrix from public system to i: public system
v global system for contravariant tensors J: global system
invT 1.j Transformation matrix from global system to i: global system
(T i : . e
! public system for contravariant tensors J: public system
gSup gij Contravariant metric tensor for public system i, j: public system
with respect to global system
gSub 8ij Covariant metric tensor for public system with i, j: public system
respect to global system
detT ‘Tﬂ Determinant of T, and also the volume of a unit Not applicable
t cube in the public system measured in the
global system
1 . . .
detInvT . Determinant of invT, and also the volume ofa Not applicable
‘Ti unit cube in the global system measured in the

public system

CHAPTER 2:

The public system of a coordinate system is the base vector system it defines and the
global system is the base vector system the public system is defined with respect to. A
global system is almost always also a frame system, whose base vectors represents the
coordinates of a frame. For example, a rotated system performs a rotation of the base

vectors of the global system to get the base vectors of the public system.

In some special situations, the global system of the selected coordinate system can
differ from the global system of the base vector system used by the feature or property.
In those cases, the transformation matrices include an extra transformation between
the different global systems. Because the global systems also are frame systems, these
extra transformations are usually called frame transformations. A frame transformation
between the material frame and the spatial frame is given by the differentiation of the

spatial coordinate with respect to the material coordinates or vice versa.

Transformation Between Coordinate Systems

All spatial vectors and matrices can transform as tensors when an operation involves

two tensors defined in different coordinate systems. Consider the following example

D =n-D

n

or in Einstein summation notation

PHYSICS BUILDER DESIGN

where subscripts indicate covariant indices and superscripts indicate contravariant
indices. The type of index determines how a tensor transforms to a different coordinate
system. A non-orthonormal coordinate system has two sets of base vectors, the
covariant and contravariant base. A covariant tensor component use contravariant base
vectors and a contravariant tensor component use covariant base vectors. For all
orthonormal systems these two set of base vectors are identical. Now assume that D
is given in a different coordinate system that n;. To compute D,, properly, D* first have

to be transformed as a contravariant tensor

u
D"* WDI

where x; is the i:th coordinate for the desired system, and u; is the i:th coordinate for
the original system. To separate tensor indices, they also include the coordinate name.

If the tensor was covariant, the transformation would become

These transformation are used whenever there exist several systems in an expression or
variable assignment. The most common example is when you use an input coordinate
system for your user inputs that differs from the base vector system in which the
variables are stored. A material tensor from the material library, for example, can
undergo a rotation to align its z-axis with the y-axis in the tensor variable used in the
model. A coordinate system for rotation is always orthonormal, so in this case it does

not matter if the tensors are covariant or contravariant.

Another situation when a variable might undergo an automatic conversion is if you try
to perform a scalar dot product between to tensor of the same type — for example,
two covariant tensors
- ij
D, =n,g Dj)
The expression parser performs a raise-index operation on D; before taking the dot

product. This is essentially a multiplication with the contravariant metric tensor, gJ

The metric tensor is the identity matrix for all orthonormal systems.

USING COORDINATE SYSTEMS

41

REFERENCE
1. G. B. Artken, H. J. Weber, Mathematical Methods for Physicists, Academic Press,
1995.

42 | CHAPTER 2: PHYSICS BUILDER DESIGN

Specifying Selections

Selection Section Settings

Specifying the selection where a certain variable definition is valid works in the same

way for all types of definitions throughout the Physics Builder. You find these settings

under the Selection section of all nodes that support a selection.

Itis not possible to give an absolute selection, because you do not know enough about

the geometry that the physics interface is used in. Instead, set up the selection relative

to selections that are known in the Model Builder.

In the Selection list specify what selection to start from. The bullets below explain the

list options, assuming that the selection belongs to a variable, but this is also valid for

all other types of nodes that support selections.

From parent. The selection becomes identical to the selection of the feature. If the
variable belongs to a property or a physics interfaces, the selection becomes identical

to the selection of the physics interface.

Global. The variable gets a global selection. This option can disable other settings,
like shape selection, for example. A shape selection does not make sense for global

selections because the only valid degree of freedom is an ODE variable.

From physics interface. Only available for selection components. The selection is

taken from the physics interface.

Source. Only available for periodic condition features and pair features. The selection

is identical to the source selection of the periodic condition or pair.

Destination. Only available for periodic condition features and pair features. The

selection is identical to the destination selection of the periodic condition or pair.

Operation. Performs an operation between several selection components defined
under the Building Blocks branch ([). The supported operations are the same as
for selections in the Model Builder; see Visualization and Selection Tools in the
COMSOL Multiphysics Reference Manual.

From external resource. Use this option to select a link to a selection definition from
an external resource. To define the selection, choose an Imported file and a Link. The
Imported file list is the list of Import nodes that has been defined and imported from

the external resource.

SPECIFYING SELECTIONS

43

44 |

CHAPTER 2:

Top level entities applicable to parent. The selection become the top level entities

applicable to the parent node (domains or boundaries, for example).

Operations on sibling-feature selections. Scarches for sibling features with a specific
type in the list containing the current feature, or if the current entity is a property
or physics interface, it searches the feature list under the physics interface. Then

performs the selected operation on the selections of the found features.

From definitions library. The selection refers to a selection component under the

Building Blocks branch that defines the selection; see Selection.

For all options except Global, you can also choose the output entity from the Output

entities list. This list has the following options:

Adjacent boundaries. The variable’s selection contains the adjacent boundaries to the
selection, which typically is a domain selection. If the selection is a boundary

selection, this option returns the boundaries adjacent to the selection.

Adjacent domains. The variable’s selection contains the adjacent domains to the

selection.
Adjacent edges. The variable’s selection contains the adjacent edges to the selection.
Adjacent points. The variable’s selection contains the adjacent points to the selection.

Mesh boundaries. Specifies that the selection is of a special kind where the entities

represents the boundaries of each mesh element in a domain selection.

Restricted to geometric entity types. The sclected entities undergo a filtering only
including the entity types selected in the Allowed entity types list, such as Exterior,
Interior, or Symmetry axis (in axial symmetry). See Selection Terminology for more
details.

Restricted to frame type. Restrict the use of the selected entities to the frame type
selected from the Frame type list. A frame type can vary across the selected entities
of a feature when the Frame type list of a feature uses the option Selectable by user;

see Using Coordinate Systems.

For the option Adjacent boundaries you get another option to restrict the output

boundaries to certain conditions. Some restrictions only make sense if the original

selection (determined by the Selection list) is a domain selection. In the Restrict to list,

you can choose among the following options:

All adjacent boundaries. This option returns all adjacent boundaries, and this is the

only option that makes sense for non-domain original selections.

PHYSICS BUILDER DESIGN

* Exterior boundaries to the domain selection. All boundaries that only has one of the

upside domain or downside domain belonging to the domain selection.

* Interior boundaries to the domain selection. The boundaries where the upside

domain and downside domain both belong to the domain selection.

* Exterior boundaries whose upside is in the domain selection. Include exterior

boundaries that has the upside domain in the domain selection.

¢ Exterior boundaries whose downside is in the domain selection. Include exterior

boundaries that has the downside domain in the domain selection.

Interior

Exterior

Interior

Exterior

Figure 2-5: A schematic of o domain selection with highlighted exterior and interior

boundaries. Note that some exterior boundaries ave not highlighted.

Selection Terminology

A selection represents a set of entities on an entity dimension or geometric entity level.

A boundary selection is a selection with the geometric entity level boundary. For a

boundary selection in 3D the set of entities is face numbers and the entity dimension

is 2. In 2D, a boundary selection has a set of edge numbers and the entity dimension

is 1. There are no edge selection in 2D and 1D, and no point selection in 1D, because

there are redundant with the boundary selection. The table below summarizes the

geometric entity levels and their entity dimensions.

LEVEL DIMENSION DIMENSION DIMENSION DIMENSION
3D 2D, 2D 1D, ID 0D OR GLOBAL
AXISYMMETRIC AXISYMMETRIC

Domain 3 2 1 N/A
Boundary 2 1 0 N/A

Edge 1 N/A N/A N/A

Point 0 0 N/A N/A

Global -1 -1 -1 -1

SPECIFYING SELECTIONS

45

46 |

2. The geometric entity type, or just entity type, is a category in which each entity in

a set belongs to. Usually, the physics interface selection defines in what entity types an

entity in a set belongs to. Below is a short summary of all entity types available for

features and selections.

ENTITY TYPE APPLIES TO LEVEL(S) DESCRIPTION

Active All levels Entities where the physics interface is
active

Inactive All levels Entities where the physics interface is
inactive

Geometry All levels Same as Active

Exterior Boundary Entities that are exterior to the physics
interface selection

Interior Boundary Entities that are interior to the physics

Symmetry axis

Pair

Source or
destination

Exterior, neither
source nor
destination

Neither source nor
destination

Identity pair

Contact pair

Boundary, Edge, Point

Boundary, Edge, Point

Boundary, Edge, Point

Boundary

Edge, Point

Boundary, Edge, Point
Boundary, Edge, Point

interface selection

Only for axial symmetry. The entities
that lies on the symmetry axis (z-axis)

Not used by entities. For a Feature it
means that the program creates an
automatic version for pairs.

Not used by entities. For a Feature it
means it only applies as a fallback
feature for pairs

Not used by entities. For a Feature it
means that it is excluded from the list
of fallback features for pairs

Same as the previous row for edges and
points

For future use

For future use

[

Only a subset of these makes sense for a selection, and some are not used
at all by the Physics Builder.

CHAPTER 2:

PHYSICS BUILDER DESIGN

The Physics Builder Manager

With the Physics Builder Manager window (&) you manage testing, compilation, and
comparison of your Physics Builder files. Testing is when you temporarily register one
or more development files (* .mphphb) in your COMSOL session to fully test their
physics interfaces in a real modeling environment. When you are satisfied with a

collection of builder files, you can compile them into a builder archive.

To open this window, click Physics Builder Manager (|2) on the main toolbar
(Windows) or, from the main menu, select Windows>Physics Builder Manager (Linux,

Mac). On the toolbar, click again to close the window.
In this section:

* The Development Files
e Compiling an Archive
* Working with Builder Archives

* Searching in Archives

Testing Custom Physics Interfaces

Physics Builder files can contain several physics declarations that you can access from
the Model Wizard. These physics interfaces are identical to &uilt-in physics interfaces
(the physics interfaces shipped with COMSOL Multiphysics), with the difference that
their functionality is specified by your Physics Builder file.

The COMSOL Multiphysics software searches and uses the Physics Builder files that

are located under the Development Files branch (Iz”)

I Click the Physics Builder Manager button (&) on the main Physics Builder toolbar,
or (on Linux and Mac) select Windows>Physics Builder Manager (&2) to open the

window.

THE PHYSICS BUILDER MANAGER

47

48 |

2 Under Archive Browser, right-click the Development Files node to add new Physics
Builder files to the list.

To remove a builder file from the list, select it and then right-click it and choose

Remove Selected (-) from the context menu.

COMSOL loads all physics interfaces listed in the Development Files node when a
new session is started. If a Physics Builder file is added during a session, COMSOL
loads it and updates the list of physics interfaces.

If the Physics Builder file is changed on the file system by another session, you have

to manually reload it to activate these changes.

3 Click the Register Development Files toolbar button (() in the Physics Builder
Manager window to reload all physics interfaces listed in the Development Files

branch ().

The Development Files

The files listed are included in your COMSOL session. This means that your interfaces
appear in the Model Wizard, so you can add them to your model and work with them
like any other physics interface. You can also save model files (*.mph) that use your
new interface. To add a development file, right-click the Development Files node (& ')
and choose Add Builder File. If you right-click any added development file, you can
choose to remove it from the list or to open it. There is also an option to compact the
archive. The compact operation removes all unnecessary data in the file to save space

and simplify textual comparisons between different versions of a file.

Whenever you make changes to a builder file listed as a development files, you must
click the Register Development Files toolbar button ((®) to re-read all files into the

current session.

If you save a model file (*.mph) that uses one of your new physics
4 interfaces, you must make sure that the same physics interface is available

when you open the file again.

CHAPTER 2:

Compiling an Archive

When your interface is finalized and you are ready to distribute it to others, you can
compile all development files into a builder archive. Right-click the Development Files

branch and choose Compile to Archive Folder. Either choose an empty folder or create

PHYSICS BUILDER DESIGN

a new one. When the compilation is finished, the new archive folder can be found as a
new branch under the Archives branch. The archive is a folder containing your source
builder files, the compiled builder files, all files the builder files refer to (icons for
example), the necessary Java code, and a set of language files for translation. The
language files are ordinary text files where you can add a translation to all descriptions

displayed for your interfaces. A language file has the following format:

#it

German language file

#

Original description = Auto current calculation

deploymenti.physi.description = Automatische Stromberechnung

Original description = Current domain

deployment1.physi.feat1.description = Stromfuhrender Bereich
All lines starting with a hash symbol (#) are comments. All files use the original
description string by default, but you replace them when translating. The original
description is always in the comment above the translation for reference. Do not
change the tag on the left side of the equal sign. This is used by the COMSOL
Multiphysics software to identify the description. The tag is a path to an entity within
a builder file with the localization tag set to deployment1 in the above example. You
can change this tag in the Root window of the root node of a builder file. Enter the
new tag in the Localization tag ficld, located in the Physics Builder section.

If you recompile an archive into to an existing archive, the compilation replaces all files
except the language files. The compilation tries to merge the language files, by adding
new descriptions, removing unused descriptions, and leave translated descriptions

untouched. Unused or unreferenced files are kept in the archive.

Do not open a builder file from the Compiled builder files folder in an

archive or add it to the development files. These files might contain file
.& references that only work in a compressed archive (*. jar). Furthermore,

they might also contain encrypted expressions that you cannot read or

change.

Working with Builder Archives

Under the Archives node (&) you find your compiled archives. You can add and
remove archives manually from this list, but a compilation always adds the compiled
archive. This list has several purposes: exporting archive as a plug-in, recompiling

archives, and open the source files for editing. Once you compiled the development

THE PHYSICS BUILDER MANAGER

49

50 |

CHAPTER 2:

files to a new archive, you should work with the source builder files in that archive,
which are copies of the ones that you added to the development files. You find them
under the Source Builder Files folder under the archive node. You can right-click any file
under the Source Builder Files node and click Open Selected to cdit the file.

Right-click the archive node and choose Compile Archive to recompile the entire
archive. This replaces all builder files under the Compiled Builder Files, adds new or
replaces existing icons, and updates the language files as described in the previous
section. To compile an individual file in an archive, right-click the node of that file and
choose Compile File. Compiling individual files is a bit limited and sometimes it is
necessary to do a full compilation of the archive to update everything properly. Here

is a list of changes that require a full update:

¢ Adding a new Physics Interface node.
¢ Adding a new file that other files link to through the External Resources branch.

* Changing icons of a physics interface, adding or changing menus and menu items
of a physics interface, and other changes that alters the plugin.xml of the archive.

* To fully update the language resources for translation.

The two latter issues are often not required to do simple testing of the functionality of
the physics interface, so it is probably safe to compile a single file although you might

not see the correct icon, for example.

Choose the option Compact Archive to reduce the file size of the builder files in the
archive by removing unnecessary data. Note that this operation does change the files
under the Source Builder Files node. A compacted file always undergoes a compact
operation before future save operations. To turn this off, open the file and select the
root node of the file. In the Physics Builder section of the Root window, clear the

Compact file during save check box.

Compare the entire archive against an SVN repository by choosing Compare with
Repository. A Connect to SVN Repository dialog box appears where you fill in the
connection settings. In the URL field you enter the location in the SVN repository that
contains the checked in archive (folder) with the same name as the selected archive.
Also fill in the user credentials in the Username and Password ficlds. You can perform

other comparisons between builder files in the Archive Browser:

¢ Select two archive nodes, right-click and choose Compare Archives.

PHYSICS BUILDER DESIGN

e Seclect two builder file nodes from the Development Files node or from a Source

Builder File node of an archive. Then right-click and choose Compare Selected Files.

¢ Ifthere is an open builder file on the desktop, select one builder file, right-click and
choose Compare with Open Physics. This compares the open file (local) with the

selected file (remote).

COMSOL displays the result of the comparison in the Comparison section. A
comparison displays the differences between a local file and a remote file. When
comparing archives there are several such pairs of local files and remote files. The
Comparison section contains a tree whose top nodes correspond to such a pair. The icon
of the node tells if the files in a pair are equal (=) or not (:f;_). Expand the node to
browse the differences between two files. For each selected node, you can view its
attributes in the table below the tree, and the bottom table displays the currently

selected pair of local and remote file.

You use the option Export As Plug-in to export the archive to a compressed archive
(*.jar), when you want to include it into a COMSOL installation. The next step is to
copy the compressed archive into the plugins folder of the COMSOL installation. To
use the Run in Web Browser feature of the Application Builder for applications that
use a physics interface created using the Physics Builder, the plug-ins also have to be
placed in the web/plugins directory. Finally, you have to restart COMSOL before

you can use the new plug-in.

In some system environments, the COMSOL installation folder can be write protected
for ordinary users, so you cannot put the exported plug-in there without contacting
the system administrator. There is an alternative location where you can put your
compiled plug-ins. In your user home folder, COMSOL always creates a .comsol
folder. Under this folder the alternative location is <version>/archives, where you
replace <version> with the current version of COMSOL. Any compressed archive
(with extension .jar) is loaded into COMSOL next time it starts.

To allow the physics interface to be used in applications running on COMSOL Server
(see the COMSOL Server Manual), the compiled plug-ins should be placed in the
server/plugins and web/plugins directories of the COMSOL Server installation
directory, or in <version>server/archives (for example, v52server/archives).

Searching in Archives

The Search in Archive section presents a way to search through the physics builder files

that you have placed under the Archives node in the Archive Browser. The kind of search

THE PHYSICS BUILDER MANAGER ‘

51

to perform is specified by the list with the options Variables (the default), Node labels,
and Override type. The text field below the list box is where you enter the search query.

¢ When Variables is selected the search lists all nodes that declare, define, or contains
a reference to the search query. The check boxes under the combo box are used to

specify if the search results should include declarations, definitions, or references.

e When Node labels is sclected the search lists all nodes whose node label begins with

the characters that are typed into the search query field.

* The Override type option specifies that the search should list all nodes that make use

of the override type that you have entered as the search query.

52 | CHAPTER 2: PHYSICS BUILDER DESIGN

Physics Builder Tools

Building Blocks
External Resources
Components
Properties

Physics and Multiphysics Interfaces
Features

User Inputs
Variables
Equations
Constraints

Device Systems

Operators and Functions

This chapter provides a description of the tools in the Physics Builder that you can
use to create custom physics interfaces for specific applications.

Definitions Library
Physics Areas

Selections

Extra Dimensions
Auxiliary Definitions
Mesh Defaults

Study and Solver Defaults
Result Defaults
Migration
Documentation

Elements

53

54 |

Building Blocks

Under the root of the Physics Builder tree there is the Building Blocks (&) branch
where you create a library of Components ([@]), Properties (#§), Features ('l-r.), and
Multiphysics Couplings (_,1;3) that you can build physics interfaces (including
multiphysics interfaces).

These items are not used in any physics interface until they are referenced
4 from a link node (see Component Link, Property Link, Feature Link, and

Multiphysics Couplings).

Components

The Components branch ([@]) has the following items:

* Component (4). A collection of user inputs, variables, equations, and constraints.
Items in this branch are available to any feature or property as component links.

e DPhysics Interface Component (4§). A collection of nodes that define something
specific that you need in several places or that group nodes together to avoid long
lists of nodes under a physics interface. Items in this branch are available to any

physics interface as physics interface component links.

e Code Editor (|Z]). Opens a text editor window for Java code, providing a possibility
to enter coded methods in Java.

The components are available to all Component Link nodes. The selection
components are available as references in other selection components or in any other
item using selections (for example Variable Definition nodes and Weak Form Equation
nodes). If the component link is in the same builder file, use Local in the Link from list
of the component link node. The components in the Components branch of another
Physics Builder file are also available, if included as an Import node under the External
Resources branch (ﬂ]]]).

{i Components

CHAPTER 3:

PHYSICS BUILDER TOOLS

Properties

In the Properties branch (#§) you can add several Property nodes. The properties in
this list are available to all Property Link nodes. If the property link is in the same

builder file, use Local in the Link from list of the property link node. The properties in
the Properties branch of another builder file are also available, if included as an Import

node under the External Resources branch.

'E}, Properties

Features

In the Features branch (|f2) you can add several Feature nodes for defining physics
features such as material models, boundary conditions, loads, and sources. The
features in this list are available to all Feature Link nodes. If the feature link is in the
same builder file, use Local in the Link from list of the feature link node. The features
in the Features branch of another builder file are also available, if included as an Import
node under the External Resources branch.

@l. Features

Multiphysics Couplings

In the Multiphysics Couplings branch (.) you can add several Coupling Feature nodes.
The coupling features in this list are available to all Multiphysics Coupling nodes. If the
multiphysics coupling is in the same builder file, use Local in the Link from list. The
coupling features in the Multiphysics Couplings branch of another builder file are also

available if you include it as an Import node under the External Resources branch.

{E}‘ Physics and Multiphysics Interfaces

BUILDING BLOCKS

55

56 |

Code Editor

The Code Editor node (|[=|) provides the possibility to enter coded methods in Java to
perform tasks that you cannot accomplish with the nodes in the Physics Builder tree. A
Code Editor node works like a Component node, so you include it through a
Component Link node. Use of the code editor requires knowledge of the Java
programming language and the COMSOL Java API. Note that adding Java code
usually makes it much harder to find and solve problems with your physics interface,

so only use it when necessary.
The following Java interfaces are supported by the Code Editor node:

e VariableDefinitionProvider. Defines expressions and selections for a set of
declared variables.

e UserInputProvider. Defines dynamic allowed values and default values for lists.

Contact COMSOL support to learn more about the supported interfaces.

CHAPTER 3:

About Links

The Physics Builder include different types of links, such as Component Link, Property
Link, Feature Link, and others. These links make it possible to define common
building blocks and the use them in the physics interfaces that you create. In the
Settings window for these link node, None is the default option in the Link list for new
and reset links. If you use the link in a physics interface that you create, you must
replace None with an actual link to a node under Building Blocks, for example;

otherwise, an error occurs when running the physics interface.

Dependencies

The Dependencies window display information about dependencies for variables and
user inputs for a number of nodes in the Physics Builder. For the selected node, these
section display the declared and defined variables, variables it uses, user inputs it uses,
and so on. To display the Dependencies window, right-click a node and choose
Dependencies ({E}). The Dependencies window then appears as a separate window next
to the Settings window unless you close it. If not applicable, the Dependencies window

is empty. Otherwise, it contains a group of sections that provide an overview of the

PHYSICS BUILDER TOOLS

items that you have declared for the feature. The contents of these sections are read-

only, and the sections are initially empty. The following sections are available:

Variable Declarations. Lists all variable declarations found in the feature, excluding
the ones declared through any component link. The table also provides information

about the description, dimension, and physical quantity of the variables.

Variable Definitions. Lists all variable definitions found in the feature, excluding the
ones defined in component links. The table also specifies if the definition is an

expression, parameter, or shape definition, and also displays the actual definition.

Necessary Variables. Lists the variables found in expressions. This list corresponds to
all the variables that must exist for this feature to work properly in all cases. Some of
the variables can be declared by the feature itself, but others must be declared

clsewhere.

Dependent Variable Definitions. Lists the dependent variables defined by this feature
with their names and physical quantity. All these definitions must have a

corresponding declaration under the physics interface.

Necessary Property User Inputs. Lists the user inputs read from properties found in
this feature. These properties and user inputs must exist in any physics interface that
uses this feature.

User Inputs. Lists the added user inputs in this feature with their array type,
dimension, and description, excluding any user inputs added by any component
links.

These sections provide useful information about the feature — for example, how you

can use a feature in different physics interfaces.

BUILDING BLOCKS

57

58 |

CHAPTER 3:

External Resources

To avoid reimplementing features, properties or components, you can use items stored
in a different builder file. All items that you implement under the Building Blocks
branch in a builder file, can be used by any other builder file that imports it. Under
External Resources ([f[f]) you can add Import nodes ([«) for importing other builder
files.

Import

Use the Import node (&) to import other builder files. The Settings window contains

the following section:

IMPORT FILE

In the File field, you enter the path to the builder file you want to import. As an
alternative, you can also click Browse and choose a file from the system. With the
Import button, you can re-import the file. This is necessary if you have changed the
selected file from another COMSOL session.

PHYSICS BUILDER TOOLS

Definitions Library

In the Definitions Library branch ([J) custom material properties groups can be added
and defined using available or additional material properties. You can also create
physical properties and other definitions that are used but are not part of a physics

interface.

There are these subbranches: Physics Areas, Selections, Extra Dimensions, and

Auxiliary Definitions.

DEFINITIONS LIBRARY | 59

Components

In this section:

¢ Creating Components e Component Link

¢ Component * Extra Dimension Link
e Physics Interface Component * 1D Interval

* Usage Condition * Multiple 1D Intervals
¢ Equation Display * 2D Rectangle

Creating Components

As an alternative to directly define variables, user inputs, and so forth, under a feature
or property, it is possible to create a collection of such items. This collection is a
Component (@), which is added under Building Blocks (&) to the Components ([&])
branch in the Physics Builder tree.

It is convenient to use a Component when you want to reuse user inputs, for example,
in several different features. Grouping variables into components can also give a better
overview if you have a feature containing a lot of variables. You can, for example,
collect all user inputs and groups used in a section, and use a Component Link in the
feature or property that needs this section. A Component can contain the same items
that a Generic Feature and Property can, with a few exceptions. For example:

* Dependent Variable Definition * Material Property

e Variable Declaration e Feature Input

e Variable Definition * Weak Form Equation
¢ User Input * Constraint

e User Input Group

60 | CHAPTER 3: PHYSICS BUILDER TOOLS

Component

Use the Component node (4}) to collect nodes that define something specific that are
needed in several places, or to group nodes together to avoid long lists of nodes under

a feature or property.
To add a Component:

* On the Home toolbar click the Component button ({§).
* Under Building Blocks, right-click Components and add it from the context menu.
To add a wide variety of features, right-click the Component node or click the buttons

on the Component, Model, or Physics Interface toolbars. The available features are

described throughout this chapter.

Variables, Equations, User Inputs, Usage Condition, Equation Display,
@ll Component Link, Extra Dimension Link, Integration Over Extra

Dimension, Operators and Functions, Elements, and Device Systems.

The Settings window has a section to specify parameters.

For information about the Dependencies window’s information about dependencies,

see Dependencies.

PARAMETERS
Specify parameters by filling in the columns Name, Description, and Default expression.
A parameter expression can be changed for each component link that uses this

component.

Select the Loop parameter check box to activate looping over the elements of a
dependent variable. Enter the Name, Description, and Default expression in the

corresponding columns of the table.

{E}‘ Entering Names and Expressions

COMPONENTS

6l

62 |

Physics Interface Component

In the Physics Interface Component node ({ff¢) you can collect nodes that define
something specific that you need in several places, or to group nodes together to avoid

long lists of nodes under a physics interface.
To add a Physics Interface Component:

* On the Home toolbar click the Physics Interface Component button ({§).
* Under Building Blocks, right-click Components and add it from the context menu.
To add a wide variety of features, right-click the Physics Interface Component node or

click the buttons on the Home or Physics Interface toolbars. The available features are

described throughout this chapter.

Variables, Feature Link, Property Link, Physics Interface Component
Link, Multiphysics Coupling, Usage Condition, Equation Display, Mesh
@l Defaults, Study and Solver Defaults, Result Defaults, Auxiliary Settings

(Physics Interface), Menu, and Menu Item.

The Settings window has a section to specify parameters.

For information about the Dependencies window’s information about dependencies,

see Dependencies.

PARAMETERS
Specity parameters by filling in the columns Name, Description, and Default expression.
A parameter expression can be changed for each component link that uses this

component.

{i Entering Names and Expressions

CHAPTER 3:

Usage Condition

The Usage Condition ({3@\) node puts a condition that enables or disables its children.
You can use the condition in a variety of contexts — for example, for variable
definitions under a feature or for solver and mesh defaults. The kind of conditions you
can use differ between contexts because some conditions cannot be evaluated in all

contexts.

PHYSICS BUILDER TOOLS

In general, to add a Usage Condition right-click a node and add it from the context

menu.

Component Link nodes can exist under a Usage Condition node with the
El" limitation that the target Component node adds no user inputs, sections,

or other user input groups. If it does, error message appears.

The Settings window has one section. The description covers all possible conditions,

but some are not visible based on the context.

USAGE CONDITION

Select a Condition: Explicit, And condition, or Or condition. For And condition and Or
condition define a usage condition that evaluates as a Boolean operation (and or or)
between other usage conditions. Add usage conditions to the Input condition list. For

any choice, select the Invert condition check box to invert the entire condition.
The following settings are for an Explicit Condition.

Restrict to Space Dimensions

Select the Restrict to space dimension check box to enable a condition on the geometry
dimension used by the model in the Model Builder. Add any of the following: 0D, 3D,
2D, Axial symmetry (2D), ID, and Axial symmetry (ID).

Restrict to Geometric Entity Levels
Select the Restrict to geometric entity levels check box to enable a condition on the
geometric entity level of the context, which can be the entity level of a feature. The

allowed levels are Global, Domain, Boundary, Edge, and Point.

For results and mesh defaults, the check box is called Restrict to entity dimensions and

has the options Volume, Surface, Line, Point, and Global.

Restrict to Study Types

Select the Restrict to study types check box to enable a condition on the study type
currently solved for. This is applicable for usage conditions under Features, Properties,
Study and Solver Defaults, and Result Defaults. A common example is when you want

to define the result of a time derivative such as:
timeDerivative(A)
in time-dependent study types but

iomega*A

COMPONENTS

63

64 |

in frequency-domain study types. The most important study types are Stationary,
Time Dependent, Frequency Domain, Eigenfrequency, and Eigenvalue. There are also other

alternatives, but some of these require additional licenses or modules.

Study and Study Step Types in the COMSOL Multiphysics Reference
@t Mannal

CHAPTER 3:

User Input
This section depends on user inputs in the parent feature, parent property, or some

property. Select the User input check box to enter the following.

Choose an option from the Specify user input list: By reference, By name, or

In expression.

If the usage condition is under a feature or property, which might contain other user
inputs, choose By reference to directly refer to any of those user inputs by in the list.
Then choose the User input and the User input condition. The options available depend
on the user input referred to, but the condition can either check if the User input is
active, or if the User input has any of certain values, in which case enter these in the
Values table.

Select By name to enter a name in the User input text field. Choose an option from the
User input from list: Containing feature or property (the default), Parent feature, Study
step, or Another property. For Another property enter the Property that contains the user

input in the field. Also choose the User input condition as described above.

For usage conditions under Study and Solver Defaults, Result Defaults, and Mesh
Defaults, the By name option is the only way to refer to a user input. Furthermore, they
can only refer to user input under a property, so there is no such choice either. Instead,
there is an option to choose the type of condition in the Condition on list. The option
User input in property ecnables the usage condition on a user input under a property.
With the option Feature is active, the usage condition is true if there exists an active
feature of a certain type. You specify the type in the Feature type ficld. Select the
Condition is not fulfilled for undefined references check box to if you want the condition

to be treated as not fulfilled instead of throwing an error if the property is undefined.

PHYSICS BUILDER TOOLS

Select In expression as a general tool that can evaluate an expression of relations and

Boolean operators that are entered in the Condition text field. It also supports some

special functions and names, summarized in the following table:

TABLE 3-1: VALID SYNTAX IN THE CONDITION FIELD

SYNTAX

DESCRIPTION

<cond 1> && <cond 2>

<cond 1> || <cond 2>
I<cond>

<value 1> == <value 2>
<value 1> != <value 2>

isActive(<input>)
contains(<array>,<value>)
{<value 1>, <value 2>, ...}
'<string>'

[par.]<input name>

[par.]<property>.<input name>

[par]..<input name>

arg.<argument name>
entity.sdim

entity.edim

entity.isAxisymmetric

<int 1> + <int 2>*<int 3>

(<cond 1> || <cond 2>) &&
<cond 3>

Logical and between conditions.
Logical or between conditions.
Logical not of a condition.

True if values are equal.

True if values are different.

Active status of the given input.

True if the value exist in the given array.
Array of values.

String value.

Value from an input in the current feature or
property. The par prefix is optional.

Value from an input in property. The par
prefix is optional.

Value from an input in the parent feature.
The par prefix is optional.

Value from an argument evaluation.
Returns the space dimension as an integer.

Returns the geometric entity level for the
current physics feature as an integer.

True if the current geometry is axisymmetric
(2D or ID),

Simple integer expression (supports: +, -, *,
/, and %).

Use parentheses to override precedence.

There are some special rules for these expressions that differ from ordinary tensor

expressions:

e The par prefix is the default prefix and can be omitted in some situations. An input

named par have to be accessed with par.par.

COMPONENTS

65

* All string values have to be typed within quotation marks (') unless they are
numbers. A number within quotation marks is different from the number itself (for
example, '1' == 1 is false).

* A Boolean input can act as a condition that returns true or false, and can be used
directly in logical expressions. Boolean inputs use the values 0 and 1 for false and
true, respectively, so a Boolean input as a condition is equivalent to the expression
<input> == 1.

* The operator isActive is only allowed in Usage Condition nodes. Using the

operator in another context results in an error.

* The only allowed prefixes are par, arg, and entity. All other prefixes are not

recognized and most likely cause an unknown input error.

Complex expressions with several inputs may result in poor performance
.ﬁ. for updates of the user interface due to long chains of event handling. A

complex enable-disable logic might also confuse the user.

The Require input is active check box is selected by default. It is only applicable when
specifying a user input to check by reference or by name, not for expressions. When
selected, the activation condition is only true if the checked user input is also active as
decided by its activation conditions. For expressions, you can achieve the equivalent

logic using the isActive operator.

Select the Invert condition check box to invert (negate) the defined condition.

Equation Display

With the Equation Display (/i1) node you can enter pretty-print equations in LaTeX
that show up in the Equations section of a physics interface or feature in the Model
Builder.

To add an Equation Display, first add a node where it is available, for example,
components, physics interfaces, multiphysics interfaces, features, or properties, then

right-click the node and choose it from the context menu.

You can also add an Equation Display under the Auxiliary Definitions
@l branch. This is the button available on the Home toolbar. See Equation

Display (Auxiliary Definitions).

66 | CHAPTER 3: PHYSICS BUILDER TOOLS

The Settings window has the following sections:

DECLARATION

If you select the Allow named references to equation check box, the Name field will be
the name used to reference to this equation display from other equation displays using
the symbref command. If you clear this check box, the tag of the equation display will
be used. Apart from named references, the automatic or given name is also used when
you use equation displays in user input groups. In this case it is important that the
name is not in conflict with other equation display names in the same physics feature
or physics property also used in input groups. See also References in Equation
Expressions.

EQUATION

Enter the LaTeX-encoded expressions in the Enter equation in LaTeX syntax field. There
are tools you can use to get help entering specific LaTeX commands.
* Press Ctrl+Space to get a list of predefined operations to choose from.

* Click the Add Expression (<=) or Replace Expression (g) toolbar buttons for the
same list of operations.

* Click the Add Expression toolbar button to concatenate expressions to the entered

expression, and Replace Expression to overwrite.
* See a preview of the entered expression under the Equation preview.

* Use the Refresh equation preview button ((™) to update this preview to f