
INTRODUCTION TO

Application Builder

C o n t a c t I n f o r m a t i o n
Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact

Technical Support, or search for an address and phone number. You can also visit the Worldwide

Sales Offices page at www.comsol.com/contact/offices for address and contact information.

If you need to contact Support, an online request form is located at the COMSOL Access page at

www.comsol.com/support/case. Other useful links include:

• Support Center: www.comsol.com/support

• Product Download: www.comsol.com/product-download

• Product Updates: www.comsol.com/support/updates

• COMSOL Blog: www.comsol.com/blogs

• Discussion Forum: www.comsol.com/community

• Events: www.comsol.com/events

• COMSOL Video Gallery: www.comsol.com/video

• Support Knowledge Base: www.comsol.com/support/knowledgebase

Part number: CM020011

I n t r o d u c t i o n t o A p p l i c a t i o n B u i l d e r
 © 1998–2016 COMSOL

Protected by U.S. Patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991;
8,457,932; 8,954,302; 9,098,106; 9,146,652; and 9,323,503. Patents pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License
Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the
license agreement.

COMSOL, the COMSOL logo, COMSOL Multiphysics, Capture the Concept, COMSOL Desktop, LiveLink, and
COMSOL Server are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the
property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with,
endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see
www.comsol.com/trademarks.

Version: COMSOL 5.2a

http://www.comsol.com/contact/
http://www.comsol.com/contact/offices/
http://www.comsol.com/support/case/
http://www.comsol.com/support/
http://www.comsol.com/product-download/
http://www.comsol.com/support/updates/
http://www.comsol.com/blogs/
http://www.comsol.com/community/
www.comsol.com/patents/
http://www.comsol.com/events/
http://www.comsol.com/video/
http://www.comsol.com/comsol-license-agreement/
http://www.comsol.com/trademarks/
http://www.comsol.com/support/knowledgebase/

Contents

Preface. 7

Introduction . 8

The Application Builder Desktop Environment 10

The Application Builder and the Model Builder 17

Parameters, Variables, and Scope . 18

Running Applications . 20

Running Applications in COMSOL Multiphysics 20

Running Applications with COMSOL Server 28

Publishing COMSOL Applications . 33

Getting Started with the Application Builder 35

The Form Editor . 40

The Forms Settings Window. 40

The Individual Form Settings Windows 41

Form Editor Preferences . 43

Form Objects . 44

Editor Tools in the Form Editor . 49

Button. 51

Graphics . 63

Input Field . 77

Unit . 83

Text Label . 84

Data Display . 85

Model Data Access in the Form Editor 88

Sketch and Grid Layout . 94

Copying Between Applications .108
 | 3

The Main Window . 110

Menu Bar and Toolbar . 112

Ribbon . 116

Events . 117

Events at Startup and Shutdown. 118

Global Events . 118

Form and Form Object Events . 122

Using Local Methods . 123

Declarations . 124

Scalar . 127

Array 1D . 130

Array 2D . 132

Choice List . 133

File . 135

Unit Set . 136

Shortcuts . 141

The Method Editor . 143

Converting a Command Sequence to a Method 143

Language Elements Window. 148

Editor Tools in the Method Editor . 148

Model Data Access in the Method Editor 151

Recording Code . 153

Checking Syntax . 156

Find and Replace. 157

Model Expressions Window . 158

Extracting Variables. 159

Syntax Highlighting, Code Folding, and Indentation 160
4 |

Method Editor Preferences .161

Ctrl+Space and Tab for Code Completion.162

Local Methods .163

Methods with Input and Output Arguments.166

Debugging .168

Stopping a Method .170

The Model Object .170

Language Element Examples .170

Libraries. .175

Images. .175

Sounds .177

Files .179

Appendix A — Form Objects .180

List of All Form Objects .180

Toggle Button .181

Check Box .184

Combo Box .188

Equation .208

Line .209

Web Page .210

Image .211

Video .211

Progress Bar. .213

Log .216

Message Log .217

Results Table .218

Form .220

Form Collection .222
 | 5

Card Stack . 224

File Import . 228

Information Card Stack . 231

Array Input. 235

Radio Button . 239

Selection Input . 241

Text . 245

List Box . 246

Table. 250

Slider. 255

Hyperlink . 257

Toolbar . 258

Spacer. 259

Appendix B — Copying Between Applications. 261

Appendix C — File Handling and File Scheme Syntax 263

File Handling with COMSOL Server 263

File Scheme Syntax . 266

File Import . 268

File Export . 276

Appendix D — Keyboard Shortcuts . 283

Appendix E — Built-in Method Library 285

Appendix F — Guidelines for Building Applications 302

Appendix G — The Application Library Examples 305
6 |

Preface

The typical user of a simulation package is someone who holds a PhD or an MSc,
has several years of experience in modeling and simulation, and underwent
thorough training to use the specific package. The user also underwent thorough
training to use the specific package. He or she typically works as a scientist in the
R&D department of a big organization or as an academic researcher. Because the
theory of simulation is complicated and the typical simulation package presents
many options, it is up to the user to employ his or her expertise to validate the
model and the simulation.
This means that a small group of simulation experts is servicing a much larger
group of people working in product development, production, or as students
studying physics effects. Simulation models are oftentimes so complicated that the
person who implemented the model is the only one who can safely provide input
data to get useful output. Hence the use of computer modeling and simulation
creates a bottleneck in product development, production, and education.
In order to make it possible for this small group to service the much larger group,
the Application Builder offers a solution. It enables simulation experts to create an
intuitive and very specific user interface for his or her otherwise general computer
model – a ready-to-use application. The general model can serve as a starting point
for several different applications, with each application presenting the user with
input and output options relevant only to the specific task at hand. The application
can include user documentation, checks for “inputs within bounds”, and
predefined reports at the click of a button.
Creating an application often requires a collaborative effort by experts within the
areas of: physics, numerical analysis, programming, user-interface design, and
graphic design.
To a reasonable extent, COMSOL’s Technical Support team can recommend
physics and numerical analysis settings for your application. In addition, the
COMSOL documentation and online resources can be of great help. For
programming and design, the Technical Support team can provide very limited
help. These are areas where your own development efforts are critical.
The Application Builder makes it easy for a team to create well-crafted applications
that avoid accidental user input errors while keeping the focus on relevant output
details.
We at COMSOL are convinced that this is the way to spread the successful use of
simulation in the world and we are fully committed to helping make this possible.
 | 7

Introduction

A COMSOL® application is an intuitive and efficient way of interacting with a
COMSOL Multiphysics® model through a highly specialized user interface. This
book gives a quick overview of the Application Builder desktop environment with
examples that show you how to use the Form editor and the Method editor.
Reference materials are also included in this book, featuring a list of the built-in
methods and functions that are available. For detailed information on how to use
the Model Builder, see the book Introduction to COMSOL Multiphysics.

If you want to check out an example application before reading this book,
open and explore one of the applications from the Application Libraries in
one of the Applications folders. Keep it open while reading this book to
try things out. Only the Applications folders contain applications with user
interfaces. The other folders in the Application Libraries are tutorial
models with no user interfaces.

The Application Builder is included in the Windows® version of COMSOL
Multiphysics and accessible from the COMSOL Desktop® environment.
COMSOL Multiphysics and its add-on products are used to create an application.
A license for the same add-on products is required to run the application from the
COMSOL Multiphysics or COMSOL Server™ products.
Additional resources, including video tutorials, are available online at
www.comsol.com.

RUNNING APPLICATIONS WITH COMSOL MULTIPHYSICS

With a COMSOL Multiphysics license, applications can be run from the
COMSOL Desktop in Windows®, OS X, and Linux®.

RUNNING APPLICATIONS WITH COMSOL SERVER

With a COMSOL Server license, a web implementation of an application can be
run in major web browsers on platforms such as Windows®, OS X, iOS, Linux®,
and Android™. In Windows®, you can also run COMSOL applications by
connecting to a COMSOL Server with an easy-to-install COMSOL Client,
available for download from www.comsol.com. COMSOL Server does not include
the Application Builder, Physics Builder, or Model Builder tools that come with
the COMSOL Desktop environment.
8 |

www.comsol.com/video/
www.comsol.com/video/

GUIDELINES FOR BUILDING APPLICATIONS

If you are not experienced in building a graphical user interface or programming,
you may want to read “Appendix F — Guidelines for Building Applications” on
page 302.
 | 9

The Application Builder Desktop Environment

The screenshot above is representative of what you will see when you are working
with the Application Builder. The main components of the Application Builder
desktop environment are:
• Application Builder window and ribbon tab
• COMSOL Desktop environment
• Form editor (see page 40)
• Method editor (see page 143)

MODEL BUILDER and APPLICATION BUILDER — Switch
between the Model Builder and the Application Builder by
clicking this button.

COMSOL DESKTOP ENVIRONMENT — The
COMSOL Desktop environment provides access
to the Application Builder, including the Form and
Method editors, as well as the Model Builder.

APPLICATION BUILDER WINDOW — The
Application Builder window with the applica-
tion tree.

SETTINGS WINDOW — Click any node in the application
tree, including those for form objects or methods, to see its
associated Settings window.
10 |

THE APPLICATION TREE

The application tree consists of the following
nodes:
• Main Window

• Forms

• Events

• Declarations

• Methods

• Libraries

The Main Window node represents the main
window of an application and is also the
top-level node for the user interface. It
contains the window layout, the main menu
specification, and an optional ribbon
specification.
The Forms node contains subnodes that are
forms. Each form may contain a number of
form objects such as input fields, graphics
objects, and buttons.
The Events node contains subnodes that are
global events. These include all events that are
triggered by changes to the various data
entities, such as global parameters or string variables. Global events can also be
associated with the startup and shutdown of the application.
The Declarations node is used to declare global variables, which are used in
addition to the global parameters and variables defined in the model.
The Methods node contains subnodes that are methods. Methods contain code for
actions not included among the standard run commands of the model tree nodes
in the Model Builder. The methods may, for example, execute loops, process
inputs and outputs, and send messages and alerts to the user of the application.
The Libraries node contains images, sounds, and files to be embedded in an MPH
file so that you do not have to distribute them along with the application. In
addition, the Libraries node may contain Java® utility class nodes and nodes for
external Java® and C libraries.
 | 11

THE FORM EDITOR

Use the Form editor for user interface layout by creating forms with form objects
such as input fields, graphics, and buttons.
The main components of the Form editor are:
• Form ribbon tab
• Application Builder window with the application tree
• Form window
• Editor Tools window
• Settings window

FORM TAB — The Form tab in the ribbon
gives easy access to the Form editor.

FORM EDITOR WINDOW — The tabbed Form
editor window allows you to move objects around
by dragging. Click an object to edit its settings.

SETTINGS and EDITOR TOOLS WINDOWS —
Click any application tree node or form object to see
its associated Settings window. The Editor Tools
window is used to quickly create form objects.

FORM OBJECTS — Each form contains form objects
such as input fields, check boxes, graphics, images, but-
tons, and more.
12 |

Creating a New Form
To create a new form, right-click the Forms node of the application tree and select
New Form. You can also click New Form in the ribbon. Creating a new form will
automatically open the New Form wizard.
If your application already has a form, for example form1, and you would like to
edit it, you can open the Form editor in either of two ways:
• In the application tree, double-click the form1 node.
• In the application tree, right-click the form1 node and select Edit.
 | 13

THE METHOD EDITOR

Use the Method editor to write methods for actions not covered by the standard
use of the model tree nodes. A method is another name for what is known in other
programming languages as a subroutine, function, or procedure.
The main components of the Method editor are:
• Method ribbon tab
• Application Builder window with the application tree
• Method window
• Model Expressions, Language Elements, Editor Tools, and Settings

windows (these are stacked together in the figure above)

METHOD TAB — The Method
tab in the ribbon gives easy ac-
cess to tools for writing and de-
bugging code.

METHOD WINDOW — The tabbed
Method Window allows you to switch
between editing different methods.

SETTINGS WINDOW — Click any
application tree node to see its asso-
ciated Settings window.

MODEL EXPRESSIONS, LANGUAGE ELEMENTS, and EDITOR TOOLS WINDOWS — These win-
dows display tools for writing code. The Model Expressions window shows all constants, parameters,
variables, and functions available in the model. The Language Elements window is used to insert tem-
plate code for built-in methods. The Editor Tools window is used to extract code for editing and running
model tree nodes.
14 |

Creating a New Method
To create a new method, right-click the Methods node in the application tree and
select New Method. You can also click New Method in the ribbon. Creating a new
method will automatically open the Method editor. Methods created in this
way are global methods and are accessible from all methods and form objects.

A sequence of commands associated with a button or menu item can be
automatically converted to a new method by clicking Convert to New
Method. Open the new method by clicking Go to Method. You can also
create a method that is local to a form object by clicking Create Local
Method. These options are shown in the figure below.

If a method already exists, say with the name method1, then you can open the
Method editor in any of these ways:
• In the application tree, double-click the method1 node.
• In the application tree, right-click the method1 node and select Edit.
• Below the command sequence in the Settings window of a form object or an

event, click Go to Method.
 | 15

APPLICATION BUILDER PREFERENCES

To access Preferences for the Application Builder, choose Preferences from the File
menu and select the Application Builder page.

You can configure the COMSOL Desktop environment so that the Application
Builder is displayed in a separate desktop window. Select the check box Use
separate desktop window for Application Builder.
Note that you can use the keyboard shortcuts Ctrl+Alt+M and Ctrl+Alt+A to
switch between the Model Builder and Application Builder, respectively.
You can set an upper limit to the number of open Form editor or Method editor
window tabs. Select the check box Maximum number of editors before closing and
edit the number (default 15). Keeping this number low can speed up the loading
of applications that contain a large number of forms.
16 |

The Application Builder and the Model Builder

Use the Application Builder to create an application based on a model built with
the Model Builder. The Application Builder provides two important tools for
creating applications: The Form editor and the Method editor. In addition, an
application can have a menu bar or a ribbon. The Form editor includes
drag-and-drop capabilities for user interface components such as input fields,
graphics objects, and buttons. The Method editor is a programming environment
that allows you to modify the data structures that represent the different parts of
a model. The figures below show the Model Builder and Application Builder
windows.

When creating an application, you typically start from an existing model.
However, you can just as well build an application user interface and the
underlying model simultaneously. You can easily, at any time, switch between the
Model Builder and Application Builder. The model part of an application, as
represented by the model tree, is called an embedded model.
The tools in the Application Builder can access and manipulate the settings in the
embedded model in several ways; For example:
• If the model makes use of parameters and variables, you link these directly

to input fields in the application by using the New Form wizard or Editor
 | 17

Tools. In this way, the user of an application can directly edit the values of
the parameters and variables that affect the model. For more information,
see pages 49 and 77.

• By using the New Form wizard or Editor Tools, you can include a button in
your application that runs a study node and thereby starts the solver. In
addition, you can use this wizard to include graphics, numerical outputs,
check boxes, and combo boxes. For more information, see pages 35 and 49.

• The Model Data Access tool and the Editor Tools window can be used to
directly access low-level settings in the model for use with form objects or
in methods. For more information, see pages 49, 88, and 148.

• By using the Record Code tool, you can record the commands that are
executed when you perform operations within the model tree and its nodes.
These will then be available in a method for further editing. For more
information, see page 153.

Parameters, Variables, and Scope

The model tree may contain both parameters and variables that are used to control
the settings of a model. The figure below shows the model tree of an application
with nodes for both Parameters and Variables.

Parameters are defined under the Global Definitions node in the model tree and are
user-defined constant scalars that are usable throughout the Model Builder. That
is to say, they are “global” in nature. Important uses are:
• Parameterizing geometric dimensions
• Specifying mesh element sizes
• Defining parametric sweeps

Variables can be defined in either the Global Definitions node or in the Definitions
subnode of any model Component node. A globally defined variable can be used
throughout a model, whereas a model component variable can only be used within
18 |

that component. Variables can be used for spatially or time-varying expressions,
including dependent field variables for which you are solving.
In the Model Builder, a parameter or variable is a string with the additional
restriction that its value is a valid model expression. For more information on the
use of parameters and variables in a model, see the book Introduction to
COMSOL Multiphysics.
An application may need additional variables for use in the Form editor and the
Method editor. Such variables are declared in the Application Builder under the
Declarations node in the application tree. The figure below shows the application
tree of an application with multiple declarations.

The declared variables in the Application Builder are typed variables, including
scalars, arrays, Booleans, strings, integers, and doubles. Before using a variable,
you have to declare its type.
The fact that these variables are typed means that they can be used directly in
methods without first being converted using one of the built-in methods. This
makes it easier to write code with typed variables than with parameters and
variables representing model expressions. However, there are several tools
available in the Application Builder for converting between the different kinds of
variables. For more information, see pages 124 and 285.
 | 19

Running Applications

With a COMSOL Multiphysics license, applications can be run from the
COMSOL Desktop environment. With a COMSOL Server license, applications
can be run in major web browsers on a variety of operating systems and hardware
platforms. In addition, you can run applications by connecting to COMSOL
Server with an easy-to-install COMSOL Client for Windows®.
The following two sections explain how to run applications from the COMSOL
Multiphysics and COMSOL Server environments. The third section, “Publishing
COMSOL Applications” on page 33, describes your rights to publish applications.

Running Applications in COMSOL Multiphysics

In COMSOL Multiphysics, you run an application using any of these ways:
• Click Test Application in the ribbon or in the Quick Access Toolbar.
• Select Run Application in the File menu or in the Quick Access Toolbar.
• Double-click an MPH file icon on the Windows® Desktop.
• Select Test in Web Browser in the ribbon.

TESTING AN APPLICATION

Test Application is used for quick tests. It opens a separate window with the
application user interface while keeping the Application Builder desktop
environment running.

While testing an application, you can apply changes to forms, methods, and the
embedded model at run time by clicking the Apply Changes button. Not all
changes can be applied at run time, and in such a case, you are prompted to close
the application and click Test Application again.
To preview the layout of a form without running the application, click Preview
Form in the ribbon.
When Test Application is used, all methods are automatically compiled with the
built-in Java® compiler. Any syntax errors will generate error messages and the
20 |

process of testing the application will be stopped. To check for syntax errors before
testing an application, click the Check Syntax button in the Method tab.

Check Syntax finds syntax errors by compiling the methods using the built-in Java®
compiler. Any syntax errors will, in this case, be displayed in the Errors and
Warnings window in the Method editor. For more information, see “The Method
Editor” on page 143.

RUNNING AN APPLICATION

Run Application starts the application in the COMSOL Desktop environment.
Select Run Application to use an application for production purposes. For example,
you can run an application that was created by someone else that is password
protected from editing, but not from running.

DOUBLE-CLICKING AN MPH FILE

When you double-click an MPH file icon on the Windows® Desktop, the
application opens in COMSOL Multiphysics, provided the MPH file extension is
associated with COMSOL Multiphysics. The application may either be opened for
editing or for running. You control this behavior from the root node of the
application tree. The Settings window for this node has a section titled Application
in which you may select either Edit application or Run application. A change in this
setting will be applied when you save the MPH file.

The option Edit application will open the application in the Application Builder.
 | 21

The option Run application will open the application in runtime mode for
production purposes. This option is similar to selecting Run Application in the File
menu with the difference that double-clicking an MPH file will start a new
COMSOL Multiphysics session.
If you have installed the COMSOL Client for Windows®, the MPH file extension
may instead be associated with the COMSOL Client, and double-clicking an
MPH file will prompt you to log in to a COMSOL Server installation.

TESTING AN APPLICATION IN A WEB BROWSER

Test in Web Browser is used for testing the application in a web browser. This
functionality makes it easy to test the look and feel of the application when it is
accessed from a web browser connected to a COMSOL Server installation.

You can choose which of the installed web browsers you would like the application
to launch in. Test in Web Browser opens a separate browser window with the
application user interface while keeping the Application Builder desktop
environment running.

TEST APPLICATION VS. TEST IN WEB BROWSER

Test Application launches the application with a user interface based on Microsoft®
.NET Framework components, whereas Test in Web Browser launches the
application with a user interface based on HTML5 components. Test Application
will display the user interface as it would appear when the app is run with
COMSOL Multiphysics or COMSOL Server, provided the COMSOL Client for
Windows® is used to connect with the COMSOL Server installation. Test in Web
Browser will display the user interface as it would appear when the app is run with
COMSOL Server, provided a web browser is used to connect with the COMSOL
Server installation.
For testing the appearance and function of an application user interface in web
browsers for OS X, iOS, Linux®, and Android™, a COMSOL Server installation
is required.
22 |

The table below summarizes the different options for running an application.

The Server column represents the software components that perform the
CPU-heavy computations. The Client column represents the software
components used to present the application user interface.

SAVING A RUNNING APPLICATION

When you test an application, it is assigned the name Untitled.mph and is a copy
of the original MPH file. This is not the case when running an application.
By default, the user of an application will not be prompted to save changes when
exiting the application. You control this behavior from the root node of the
application tree. The Settings window for this node has a section titled Application
in which you may select the check box Ask to save application when closing, as
shown in the figure below.

As an alternative, you can add a button or menu item with a command to save the
application. For more information, see page 115.

SERVER CLIENT

COMSOL Multiphysics Test Application

COMSOL Multiphysics Test in Web Browser

COMSOL Multiphysics Run Application

COMSOL Server COMSOL Client for Windows®

COMSOL Server Web Browser
 | 23

APPLICATION LIBRARIES

From the File menu, select Application Libraries to run and explore the example
applications that are included in the COMSOL installation. Many of the
screenshots in this book are taken from these examples.
24 |

You run an application, or open it for editing, by clicking the corresponding
buttons below the Application Libraries tree.

Applications that contain a model, but no additional forms or methods, cannot be
run and only opened for editing. Applications that contain forms and methods are
collected in folders named Applications.
The applications in the Application Libraries are continuously improved and
updated. You can update the Application Libraries by clicking Update COMSOL
Application Library below the tree.

Additional applications that are not part of the Application Libraries may be
available from the COMSOL website in the Application Gallery. To find these
applications, click the Application Gallery button below the tree. This will open a
browser with the web page for the Application Gallery.

Each application has an associated thumbnail image that is displayed in the
Application Libraries. In the COMSOL Server web interface, the thumbnail image
is displayed on the Application Library page.
 | 25

To set the thumbnail image, click the root node of the application tree. The
Settings window has two options: Set from Graphics Window and Load from File.
The Load from File option allows you to load images in the PNG or JPG file
formats. Choose an image size from 280-by-210 to 1024-by-768 pixels to ensure
that the image displays properly as a thumbnail in COMSOL Multiphysics and
COMSOL Server.

The Set from Graphics Window option automatically creates two thumbnail images:
• An image of size 280-by-210 pixels shown in the Settings window of the

application tree root node and in the Application Libraries.
• An image of size 1024-by-768 used as the default title page image in reports

and in the Application Libraries in COMSOL Server.

PASSWORD PROTECTION

An application can be password protected to manage permissions. You assign
separate passwords for editing and running in the Settings window, accessible by
clicking the root node of the application tree in the Application Builder window.
26 |

You must have permission to edit an application in order to create passwords for
running it.

When you open a password-protected MPH file, for editing or running, a dialog
box prompts you for the password:

To remove password protection, create an empty password.
The password protection is used to encrypt all model and application settings,
including methods. However, binary data, such as the finalized geometry
including embedded CAD files, mesh data, and solution data, is not encrypted.

SECURITY SETTINGS

When creating an application with the Application Builder, it is important to
consider the security of the computer hosting the application. Both COMSOL
Multiphysics and COMSOL Server provide a very similar set of security settings
for controlling whether or not an application should be allowed to perform
external function calls, contain links to C libraries, run MATLAB functions, access
external processes, and more.
The security settings in COMSOL Multiphysics can be found in the Security page
in the Preferences window accessed from the File menu. In COMSOL Server, they
are available in the Preferences page in the COMSOL Server web interface if you
 | 27

are logged in as an administrator. If you are not sure what security settings to use,
contact your systems administrator.

Running Applications with COMSOL Server

COMSOL applications can be run by connecting to COMSOL Server from a web
browser or a COMSOL Client for Windows®. The COMSOL Client for
Windows® allows a user to run applications that require a LiveLink™ product for
CAD, as described in “Running Applications in the COMSOL Client”.
Running applications in a web browser does not require any installation or web
browser plug-ins. Running an application in a web browser supports interactive
graphics in 1D, 2D, and 3D. In a web browser, graphics rendering in 3D is based
on WebGL™ technology, which is included with all major web browsers.

RUNNING APPLICATIONS IN A WEB BROWSER

Using a web browser, you can point directly to the computer name and port
number of a COMSOL Server web interface — for example,
http://comsol-server-machine-url.com:2036, assuming that port number
2036 is used by your COMSOL Server installation. You need to provide a
username and password to log in.
28 |

When logged in, the Application Library page displays a list of applications to run.

Click Run in browser to run an application. Applications are run in separate tabs in
the browser.
 | 29

Limitations When Running Applications in Web Browsers
When you create applications to run in a web browser, make sure you use the grid
layout mode in the Application Builder; See “Sketch and Grid Layout” on page
94. This will ensure that the user interface layout adapts to the size and aspect ratio
of the browser window. For low-resolution displays, make sure to test the user
interface layout in the target platform to check that all form objects are visible.
Applications that contain resizable graphics forms may not fit in low-resolution
displays. In such cases, use graphics with fixed width and height to make sure all
form objects fit in the target browser window. Depending on the type of web
browser and the graphics card, there may be restrictions on how many graphics
objects can be used in an application. You can get around such limitations by,
instead of using multiple graphics objects, reuse the same graphics object by
switching its source.
When running in a web browser, the LiveLink™ products for CAD software
packages are not supported.
When running COMSOL applications in web browsers for smartphones and
certain tablets, not all functionality is supported. Typical limitations include the
ability to play sounds or open documents. In addition, file upload and download
may not be supported.
If the application allows the user to make selections, such as clicking on boundaries
to set boundary conditions, running in a web browser is different from running in
COMSOL Multiphysics or the COMSOL Client for Windows®. In a web
browser, boundaries are not automatically highlighted when hovering. Instead, it
is required to click once to highlight a boundary. A second click will make the
selection. A third click will highlight for deselection and a fourth click will deselect.
The process is similar for domains, edges, and points.

RUNNING APPLICATIONS IN THE COMSOL CLIENT

As an alternative to using a web browser for running applications, the COMSOL
Client for Windows® can be used to connect to COMSOL Server for running
applications natively in the Windows® operating system. This typically gives better
graphics performance and supports more sophisticated graphics rendering in 1D,
2D, and 3D. In addition, the COMSOL Client for Windows® allows running
applications that require a LiveLink™ product for CAD, provided that the
30 |

COMSOL Server you connect to has the required licenses. You can open an
application with the COMSOL Client for Windows® in two different ways:
• The COMSOL Server web interface will

allow you to choose between running an
application in a web browser or with the
COMSOL Client for Windows®.
If you try to run an application with the
COMSOL Client in this way, but it is not yet
installed, you will be prompted to download
and install it.

• If you have the
COMSOL Client for
Windows® already
installed, a desktop
shortcut will be
available. You can
double-click its
desktop icon and
before you can use
the COMSOL Client to run applications, you will be prompted to log into
a COMSOL Server with a valid username and password. After login, the
COMSOL Client displays a COMSOL Server web interface identical to that
seen when logging in from a web browser.

Using the COMSOL Client, applications run as native Windows® applications in
separate windows. For example, applications run in the COMSOL Client may
have a Windows® ribbon with tabs. When run in a web browser, ribbons are
represented by a toolbar.
 | 31

In the figure below, the COMSOL Server web interface is shown (top) with an
application launched in the COMSOL Client for Windows® (bottom).

RUNNING COMSOL SERVER ON MULTIPLE COMPUTERS OR A CLUSTER

COMSOL applications can be run on multiple computers or clusters in two main
ways:
• By installing COMSOL Server with primary and secondary instances.
• By configuring one of the study nodes in the Model Builder for a particular

cluster.
32 |

Primary and Secondary Instances
Running COMSOL Server on multiple computers using primary and secondary
instances allows for more concurrent users and applications than a single computer
instance (or installation). The main COMSOL Server instance is called primary
and the other instances are called secondary. The primary server is used for all
incoming connections — for example, to show the web interface or to run
applications in a web browser or with COMSOL Client. The actual computations
are offloaded to the secondary server computers. This type of installation has a
major benefit: Applications do not need to be custom-built for a particular cluster.
Load balancing is managed automatically by the primary server, which distributes
the work load between the secondary servers.

Configuring a Study Node for Cluster Sweep or Cluster Computing
If you want to utilize a cluster for applications that require large parametric sweeps
or high-performance computing power, then you can configure the Model
Builder study node(s) of an application using the Cluster Sweep and Cluster
Computing options. Note that for building such applications, you will need a
Floating Network License. You can find more information on configuring a study
node for clusters in the books Introduction to COMSOL Multiphysics and the
Reference Manual. For running such cluster-enabled applications, you can use
either COMSOL Server or a Floating Network License of COMSOL
Multiphysics.
For more information on COMSOL Server, see the COMSOL Server Manual
available with a COMSOL Server installation or from
http://www.comsol.com/documentation/COMSOL_ServerManual.pdf.

Publishing COMSOL Applications

The COMSOL Software License Agreement (SLA) gives you permission to
publish your COMSOL applications for others to use, including commercially,
with certain restrictions spelled out in the SLA available here:
www.comsol.com/sla. This permission enables you to share your applications with
others and to charge them for using your applications.
The user of an application that you make available will need access to either
COMSOL Multiphysics or COMSOL Server with the necessary add-on products.
For using an application with COMSOL Multiphysics, the user needs to belong
to the same organization that purchased the COMSOL Multiphysics license. For
more flexibility, you can set up a COMSOL Server installation and let users from
around the world access your application. You just need to provide them with a
 | 33

username and password to your COMSOL Server installation. Alternatively, the
users can purchase their own COMSOL Server license.
The COMSOL Application License, also available at www.comsol.com/sla,
further lets you modify applications available in the Application Libraries and
publish those modified applications for others to use, including commercially,
with certain restrictions spelled out in the Application License. This allows you to,
for example, use one of the applications in the Application Libraries as a starting
point for your own applications by adding or removing your own features.
If you wish to apply the Application License to Applications that you create, the
Application License contains instructions on how to do so. The Application
License also addresses how you can use terms that you choose for modifications
you make to applications available in the Application Libraries, while the original
portions of those applications remain available under the Application License.
If you use COMSOL Server to host and run applications, the SLA also gives you
permission to make time on your COMSOL Server License (CSL) available to
persons outside your organization to host and run applications that you are
publishing to others, subject to certain restrictions.
34 |

Getting Started with the Application Builder

STARTING FROM A COMSOL MULTIPHYSICS MODEL

If you do not have a model already loaded to the COMSOL Desktop
environment, select File>Open to select an MPH file from your file system or select
a file from the Application Libraries. Note that the files in the Applications folders
are ready-to-use applications. All other files in the Application Libraries contain a
model and documentation, but not an application user interface.
Once the model is loaded, click the Application Builder button in the ribbon Home
tab. This will take you to the Application Builder desktop environment.

CREATING A NEW FORM

To start working on the user interface layout, click the New Form button in the
Home tab. This will launch the New Form wizard.

The New Form wizard assists you with adding the most common user interface
components, so-called form objects, to the first form of your application. It has
three tabs:
• Inputs/outputs
 | 35

• Graphics

• Buttons

Double-click a node or click the Add Selected button to move a node from the
Available area to the Selected area. The selected nodes will become form objects in
the application, and a preview of the form is shown in the Preview area to the right.
The size as well as other settings for form objects can be edited after exiting the
wizard. At the top of the wizard window, you can change the name and title of
the form. For details see “The Individual Form Settings Windows” on page 41.
You can also choose to exit the New Form window at this stage by clicking Done,
and then manually add form objects.

The Inputs/Outputs Tab
The Inputs/outputs tab displays the model tree nodes that can serve as an input
field, data display object, check box, or combo box. Input fields added by the
wizard will be accompanied by a text label and a unit, when applicable. You can
make other parts of the model available for input and output by using Model Data
Access (see page 88). Check box and combo box objects are only available in this
way. For example, you can make the Predefined combo box for Element Size under
the Mesh node available in the wizard by enabling it with Model Data Access.
36 |

In the figure below, three parameters, including Length, Width, and Applied
voltage, have been selected to serve as input fields.

In the figure below, corresponding to a different model, three Derived Values
nodes have been selected to serve as data display objects.
 | 37

After exiting the wizard, you can edit the size and font color as well as other
settings for input fields and data display objects.

The Graphics Tab
The Graphics tab displays the model tree nodes that can serve as graphics objects:
Geometry, Selection, Mesh, and Results. In the figure below, two such nodes have
been selected.

The Buttons Tab
The Buttons tab displays the model and application tree nodes that can be run by
clicking a button in the application user interface. Examples of such tree nodes are
Plot Geometry, Plot Mesh, Compute Study, and each of the different plot groups
under Results. In addition, you can add buttons for GUI Commands, Forms, and
Methods.
38 |

In the figure below, three buttons have been added: Plot Geometry, Plot Mesh, and
Compute.

Using the Form editor, you can add buttons that run your own custom command
sequences or methods.

EXITING THE WIZARD

Click OK to exit the wizard. This automatically takes you to the Form editor.

SAVING AN APPLICATION

To save an application, from the File menu, select File>Save As. Browse to a folder
where you have write permissions, and save the file in the MPH file format. The
MPH file contains all of the information about the application, including
information about the embedded model created with the Model Builder.
 | 39

The Form Editor

Use the Form editor for user interface layout to create forms with form objects
such as input fields, graphics, buttons, and more.

The Forms Settings Window

The Settings window for forms is displayed when you click the Forms node in the
application tree. It lets you change the overall appearance of forms with settings
for Text color, Background color, Font, Font size, Bold, Italic, and Underline.

The default is that all new forms and new form objects inherit these settings when
applicable.
In the figure above, and in some of the figures below, the Settings window is
docked to the right of the Application Builder window. By default, the Settings
window is docked to the far right in the Application Builder desktop environment.
40 |

The Individual Form Settings Windows

The figure below shows the Settings window for a form.

Each form has its own Settings window with settings for:
• Name used to reference the form in other form objects and methods.
• Form Title that is used in applications with several forms.
• Initial size of the form when used as a dialog box or when the Main Window is

set to have its size determined by the form.
• Margins with respect to the upper-left corner (Horizontal and Vertical).
• Choices of when to store changes in dialog boxes (Store changes), see also

“Showing a Form as a Dialog Box” on page 59.
• Icon shown in the upper-left corner of a dialog box.
 | 41

• Choices of whether the form should be Resizable or not when used as a dialog
box.

• Choices of whether to view sections as Expandable and whether they should
be Initially collapsed (Section Settings).

• Table with the formatting of all columns and rows included in the form (Grid
Layout for Contained Form Objects).

• Appearance with settings for Text color, Background color, and Background
image.

• Events that are triggered when a form is loaded or closed. (On load and On
close.)

Double-click a form node to open its window in the Form editor. Alternatively,
you can right-click a form node and select Edit. Right-click a form window tab to
see its context menu with options for closing, floating, and tiling form windows.

SKETCH AND GRID LAYOUT MODES

The Application Builder defaults to sketch layout mode, which lets you use fixed
object positions and size. The instructions in the section “The Form Editor”
assume that the Form editor is in sketch layout mode unless otherwise specified.
For information on grid layout mode, see “Sketch and Grid Layout” on page 94.

INITIAL SIZE OF A FORM

There are two options for the initial size of a form:
• Manual lets you enter the pixel size for the width and height.
• Automatic determines the size based on the form objects that the form

contains. If you are using grid layout mode and there are columns or rows
set to Grow, then the size is not defined by the form objects. In this case, the
size is estimated using the Form editor grid size as a base point. (It will
typically be slightly larger.) You can change the grid size by dragging the
42 |

right or bottom border of the grid. For more information on grid layout
mode, see “Grid Layout” on page 97.

Form Editor Preferences

To access Preferences for the Form editor, choose Preferences from the File menu
and select the Forms page.

The Forms section includes settings for changing the defaults for Layout mode,
Margins, and Sketch grid.
 | 43

Form Objects

POSITIONING FORM OBJECTS

You can easily change the positioning of form objects such as input fields, graphics
objects, and buttons in one of the following ways:
• Click an object to select it. A selected object is highlighted with a blue

frame.
• To select multiple objects, use Ctrl+click. You

can also click and drag to create a selection
box in the form window to select all objects
within it.

• Hold and drag to move to the new position.
Blue guidelines will aid in the positioning relative to other objects.

• In sketch layout mode, you can also use the keyboard arrow keys to move
objects. Use Ctrl+arrow keys to fine tune the position.

In the figures below, a Plot button is being moved from its original position. Blue
guide lines show its alignment relative to the unit objects and the Compute button.

RESIZING FORM OBJECTS

To resize an object:
• Click an object to select it.
• Hold and drag one of the handles, shown as blue dots, of the highlighted

blue frame. If there are no handles, this type of form object cannot be
resized.
44 |

COPYING, PASTING, DUPLICATING, AND DELETING AN OBJECT

To delete an object, click to select it and then press Delete on your keyboard. You
can also click the Delete button in the Quick Access Toolbar.
You can copy-paste an object by pressing Ctrl+C and Ctrl+V. Alternatively, you
can right-click an object to get menu options for Copy, Duplicate, Delete, and more.

To paste an already copied object, right-click an empty area in the form and
right-click again. Depending on the copied object, a Paste menu option will be
shown. In the figure below, an Input Field has previously been copied and as a
result, a Paste Input Field option is shown.
 | 45

ADJUSTING POSITION AND SIZE BY THE NUMBER OF PIXELS

When in sketch layout mode, you can adjust the position and size of an object by
typing the number of pixels in the Position and Size section of its Settings window:
• Click an object to select it. Make sure its Settings window is shown. If not,

double-click the object or click the Settings button in the Form tab.
• Edit the numbers in the Position and Size section.

The Position and Size section will have different options depending on the type of
form object. For grid layout mode, there are additional settings for the position of
the object with respect to rows and columns. For details, see “Sketch and Grid
Layout” on page 94.

CHANGING THE APPEARANCE OF DISPLAYED TEXT

For form objects that display text, the Appearance section in the Settings window
lets you change properties such as the text displayed, font, font color, and font
size. For some form objects, such as a button, the size of the object will adapt to
the length of the text string.
46 |

In the figure below, the Settings window for a text label object is shown where the
font size and color is changed.

By using grid layout mode (see “Sketch and Grid Layout” on page 94) you can
gain further control over the size of form objects, such as setting an arbitrary size
for a button.

SELECTING MULTIPLE FORM OBJECTS

If you select more than one form object, for example, by using Ctrl+click, then the
Settings window will contain a set of properties that can be shared between the
selected objects. Shared properties will always originate from the Appearance
section, the Position and Size section, or the Events section.

THE NAME OF A FORM OBJECT

A form object has a Name, which is a text string without spaces. The string can
contain letters, numbers, and underscore. In addition, the reserved names root
and parent are not allowed. The Name string is used in other form objects and
methods to reference the object. The path to the object is shown as a tooltip when
hovering over the Name field in the Settings window.
 | 47

INSERTING FORM OBJECTS

You can insert form objects in addition to those created by the New Form wizard.
In the Form ribbon tab, select the Insert Object menu to see a listing of all available
objects.

The remainder of this section, “The Form Editor”, only describes the types of
form objects that are added by the New Form wizard. The form objects added by
using the wizard may include:
• Button

• Graphics

• Input Field

• Text Label (associated with Input Field)
• Unit (associated with Input Field)
• Data Display

However, when using Model Data Access (see page 88), the following form objects
may also be added:
• Check Box

• Combo Box
48 |

For more information on the check box, combo box, and other form objects, see
“Appendix A — Form Objects” on page 180.

EVENTS AND ACTIONS ASSOCIATED WITH FORM OBJECTS

You can associate objects such as buttons, menu items, ribbon buttons, forms, and
form objects with actions triggered by an event. An action can be a sequence of
commands including global methods or local methods. Local methods are not
accessible or visible outside of the objects where they are defined. The events that
can be associated with an object depend on the type of object and include: button
click, keyboard shortcut, load of a form (On load), close of a form (On close), and
change of the value of a variable (On data change).
Using Ctrl+Alt+click on a form object opens its local method in the Method editor.
If there is no method associated with the form object, a new local method will be
created, associated with the form object, and opened in the Method editor.

Editor Tools in the Form Editor

The Editor Tools window is an important complement to the New Form wizard and
the Insert Object menu for quickly creating composite form objects. To display the
Editor Tools window, click the corresponding button in the Main group in the Form
tab.
 | 49

You can right-click the nodes in the editor tree to add the same set of form objects
available with the New Form wizard.

When a node is selected, the toolbar below the editor tree shows the available
options for inserting an object. You can also right-click for a list of these options.
Depending on the node, the following options are available:
• Input

An Input Field, Check Box, Combo Box, or File Import object is inserted as follows:
- Inserts an Input Field using the selected node as Source. It is accompanied by

a Text Label and a Unit object, when applicable.
- Inserts a Check Box using the selected node as Source.
- Inserts a Combo Box using the selected node as Source. A choice list is

automatically created, corresponding to the list in the node. This option is
only available when used with Model Data Access (see page 88) to make the
corresponding node available in the editor tree.

- Inserts a File Import object using the selected node as File Destination.
50 |

• Output

- Inserts a Data Display object accompanied by a Text Label when applicable.
- Inserts a Results Table object when the selected node is a Table.

• Button

- Inserts a Button object with a command sequence running the selected node.
• Graphics

- Inserts a Graphics object using the selected node as Source for Initial Graphics
Content.

• Edit Node

- Brings you to the Settings window for the corresponding model tree node.
The Editor Tools window is also an important tool when working with the
Method editor. In the Method editor, it is used to generate code associated with
the nodes of the editor tree. For more information, see “Editor Tools in the
Method Editor” on page 148.

Button

Clicking on a Button is an event that triggers an action defined by its command
sequence. The main section of the Settings window for a button allows you to:
• Edit the form object Name of the button.
• Edit the Text displayed on the button.
• Use an Icon instead of the default rendering of a button.
• Change the button Size from Large to Small.
 | 51

• Add a Tooltip with text that is shown when hovering over the button.
• Add a Keyboard shortcut by clicking the input field and entering a

combination of the modifier keys Shift, Ctrl, and Alt together with another
keyboard key. Alt must be accompanied by at least one additional modifier.

CHOOSING COMMANDS TO RUN

The section Choose Commands to Run lets you control the action associated with a
button-click event. The figure below shows the Settings window for a button that
triggers a sequence of four commands.
52 |

A menu, ribbon, or toolbar item will also provide a Choose Commands to Run
section in its Settings window, and the functionality described in this section
applies. For more information on using menu, ribbon, and toolbar items, see
“Graphics Toolbar” on page 68, “The Main Window” on page 110, “Table” on
page 250, and “Toolbar” on page 258.
To define a sequence of commands, in the Choose Commands to Run section, select
a node in the editor tree. Then click one of the highlighted buttons under the tree,
or right-click and select the command. In the figure below, the Geometry node is
selected and the available commands Run and Plot are highlighted. Click Run to
add a geometry-building command to the command sequence. Click Plot to add
a command that first builds and then plots the geometry. The option Edit Node
will take you to the corresponding node in the model tree or the application tree.

You do not need to precede a Plot Geometry command with a Build
Geometry command (that you get by clicking Run). The Plot Geometry
command will first build and then plot the geometry. In a similar way, the
Plot Mesh command will first build and then plot the mesh.

The command icons highlighted for selection are those applicable to the particular
tree node. This is a list of the command icons that may be available, depending
upon the node:
• Run

• Plot

• Set Value

• Show

• Show as Dialog

• Import File
 | 53

• Enable

• Disable

Some commands, such as the various plot commands, require an argument. The
argument to a plot command, for example, defines which of the different graphics
objects the plot should be rendered in.
The example below shows the Settings window and command sequence for a
Compute button as created by the New Form wizard. This button has a command
sequence with two commands: Compute Study 1 and Plot Temperature.

The Plot Temperature command has one argument, graphics1.
54 |

To add or edit an input argument, click the Edit Argument button below the
command sequence, as shown in the figure below.

To reference graphics objects in a specific form, the following syntax is used:
/form1/graphics2, /form3/graphics1, etc. If a specific form is not specified, for
example, graphics1, then the form where the button is located is used.
To control the order and contents of the sequence of commands, use the Move Up,
Move Down, and Delete buttons located below the command sequence table.
 | 55

CONVERTING A COMMAND SEQUENCE TO A METHOD

A sequence of commands can be automatically converted to a new method, and
further edited in the Method editor, by clicking Convert to New Method.

Open the new method by clicking Go to Method.
56 |

You can also create a method that is local to a form object by clicking
Create Local Method. These options are shown in the figure below.

The method contains calls to built-in methods corresponding to the commands in
the commend sequence, as shown in the figure below.

In this example, the first line:
model.study(“std1”).run()

runs the model tree node corresponding to the first study std1 (the first study
node is called Study 1 unless changed by the user). The second and third lines:

useGraphics(model.result("pg2"), "form1/graphics1");
useGraphics(model.result("pg1"), "form1/graphics2");

use the built-in method useGraphics to display plots corresponding to plot
groups pg1 and pg2, respectively. In this example, the plots are displayed in two
different graphics objects, graphics1 and graphics2, respectively.
For more information on methods, see “The Method Editor” on page 143.

SETTING VALUES OF PARAMETERS AND VARIABLES

The Set Value command allows you to set values of parameters and variables that
are available in the Parameters, Variables, and Declarations nodes. In addition, Set
Value can be used to set the values of properties made accessible by Model Data
 | 57

Access (see page 88). The figure below shows a command sequence used to
initialize a set of parameters and a string variable.

To learn how to perform the same sequence of operations from a method, click
the Convert to New Method button under the command table.

CHANGING WHICH FORM IS VISIBLE

A button on a form can also be used to display a new form. This can be done in
two ways. The first is to use the Show command, which will replace the original
form with the new form. The second is to use the Show as Dialog command. In this
case, the new form will pop up as a dialog box over the current form, and will
usually request input from the user.
58 |

In the section Choose Commands to Run, you can select the Show command. The
figure below shows the command sequence for a button with a command Show
form3.

This command will leave the form associated with the button and make the
specified form visible to the user.

SHOWING A FORM AS A DIALOG BOX

In order to use the Show as Dialog command, begin with the Choose Commands to
Run section and select the form that you would like to show. The figure below
 | 59

shows an example of the settings for a button with the command Show form2 as
dialog.

With these settings, clicking the button in the application will launch the following
dialog box corresponding to form2:
60 |

The form2 window in this example contains a text label object and an OK button,
as shown in the figure below.

In the Settings window, the Dialog Actions section has two check boxes:
• Close dialog

• Store changes

In the example above, the Close dialog check box is selected. This ensures that the
form2 window is closed when the OK button is clicked. Since form2 does not have
any user inputs, there is no need to select the Store changes check box.
Typical dialog box buttons and their associated dialog actions are:

A dialog box blocks any other user interaction with the application until it is
closed.
In order to control when data entered in a dialog box is stored, there is a list in
the Dialog Settings section of the Settings window of a form where you can select

BUTTON DIALOG ACTIONS

OK Close dialog and Store changes

Cancel Close dialog

Apply Store changes
 | 61

whether to store data On request or Immediately when the change occurs, as shown
in the figure below.

APPEARANCE

In the Settings window for a button, the Appearance section contains font settings
as well as settings that control the state of the button object.

Changing the Enabled and Visible State of a Form Object
Whether or not the button object should be Visible or Enabled is controlled from
the check boxes under the State subsection. The Appearance section for most form
objects has similar settings, but some have additional options; for example, input
field objects.
A button, or another form object, with the Visible check box cleared will not be
shown in the user interface of the running application. A form object with the
Enabled check box cleared will be disabled, or “grayed out”, but still visible. The
state of a form object can also be controlled using built-in methods. For example,
assume that a Boolean variable enabled_or_disabled is used to determine the
enabled/disabled state of a button with Name button3. In this case, you can
control the state of the button as follows:
62 |

setFormObjectEnabled("button3", enabled_or_disabled);

In a similar way, the call
setFormObjectVisible("button3", visible_or_not);

lets a Boolean variable visible_or_not control whether the button is shown to
the user or not.
For more information, see “GUI-Related Methods” on page 291 and the
Application Programming Guide.

Graphics

Each Graphics object gets a default name such as graphics1, graphics2, etc.,
when it is created. These names are used to reference graphics objects in command
sequences for buttons, menu items, and in methods. To reference graphics objects
in a specific form, use the syntax: /form1/graphics2, /form3/graphics1, etc.

SELECTING THE SOURCE FOR INITIAL GRAPHICS CONTENT

In the Settings window for a graphics object, use the section Source for Initial
Graphics Content to set the plot group to be displayed as default. To select, click
Use as Source or double-click a node in the tree. If a solution exists for the
displayed plot group, the corresponding solution will be visualized when the
 | 63

application starts. The figure below shows the Settings window for a graphics
object with a Temperature plot selected as the source.

In addition to Results plot nodes, you can also use Selection, Geometry, and Mesh
nodes as the Selected source.
Selecting the check box Zoom to extents on first plot, positioned below the
Selected source setting, ensures that the first plot that appears in the graphics
canvas shows the entire model (zoom extents). This action is triggered once the
first time that graphics content is sent to the graphics object.

APPEARANCE

For a graphics object, the Appearance section of the Settings window has the
following options:
• Include an Icon, such as a logo image, in the upper-right corner.
64 |

• Set the background Color for 2D plots.
• Set a flat or graded background color for 3D plots by choosing a Top color

and Bottom color.

In addition, the subsection State (not shown in the figure above) contains settings
for the visible and enabled state of the graphics object. For more information, see
“Changing the Enabled and Visible State of a Form Object” on page 62.
The figure below shows an application where the background Top color is set to
white and the Bottom color to gray. In addition, the standard plot toolbar is not
included.

GRAPHICS COMMANDS

In the editor tree used in a command sequence of, for example, a button, the
Graphics Commands folder contains commands to process or modify a graphics
 | 65

object. The figure below shows a command sequence with one command for
printing the contents of a graphics object.

The available Graphics Commands are:
• Zoom Extents

- Makes the entire model visible.
• Reset Current View

- Resets the currently active view to the state it had when the application was
launched; also see “Views” on page 72.

• Scene Light

- Toggles the scene light (on or off).
• Transparency

- Toggles the transparency setting (on or off).
• Print

- Prints the contents of the graphics object.

Note that the commands Zoom Extents, Reset Current View, Scene Light,
Transparency, and Print have corresponding toolbar buttons in the standard
graphics toolbar. See the next section “Graphics Toolbar”.

Plot While Solving
To let the user monitor convergence, you can plot the results while solving. In this
example, assume that the Plot option is enabled for Results While Solving. This
66 |

option is available in the Settings window of a Study node in the model tree, as
shown in the figure below.

You can include a method that calls the built-in sleep method for briefly
displaying graphics information before switching to displaying other types of
graphics. Insert it in a command sequence after a plot command, as shown in the
figure below.

In this example, the sleep_a_bit method contains one line of code:
sleep(1000); // sleep for 1000 ms

For more information on the method sleep, see “sleep” on page 296.
In the command sequence above, the Plot Velocity command comes before the
Compute Study command. This ensures that the graphics object displays the
velocity plot while solving.

USING MULTIPLE GRAPHICS OBJECTS

Due to potential graphics hardware limitations on the platforms where your
application will be running, you should strive to minimize the number of graphics
objects used. This is to ensure maximum portability of your applications. In
addition, if you intend to run an application in a web browser, there may be
 | 67

additional restrictions on how many graphics objects can be used. Different
combinations of hardware, operating systems, and web browsers have different
limitations.
In this context, two graphics objects with the same name but in different forms
count as two different graphics objects. For example, form1/graphics1 and
form2/graphics2 represent two different graphics objects. In addition, if a
graphics object is used in a subform (see “Form” on page 220), then each use of
that subform counts as a different graphics object.
To display many different plots in an application, you can, for example, create
buttons, toggle buttons, or radio buttons that simply plot to the same graphics
object in a form that does not use subforms.
If you need to use methods to change a plot, use the useGraphics command. For
more information on writing methods, see “The Method Editor” on page 143.
The example code below switches plot groups by reusing the same graphics object,
based on the value of a Boolean variable.

if (my_boolean) {
 useGraphics(model.result("pg1"), "form1/graphics1");
 my_boolean=!my_boolean; // logical NOT to change between true and false
} else {
 useGraphics(model.result("pg2"), "form1/graphics1");
 my_boolean=!my_boolean;
}

GRAPHICS TOOLBAR

The type of tree node used in the Source for Initial Graphics Content determines the
type of toolbar that is shown. The toolbar will be different depending on the space
dimension and whether the referenced source is a Geometry, Mesh, Selection, or
Plot Group node. For example, the Plot Group node displays an additional Show
Legends button.
In the Settings window of a graphics object, in the Toolbar section, you can control
whether or not to include the graphics toolbar, as well as its position (Below,
Above, Left, Right).
68 |

Graphics Toolbar for Geometry and Mesh
The figure below shows the standard graphics toolbar as it appears when the
Geometry or Mesh node, for a 3D model, is used as a Source for Initial Graphics
Content.

Graphics Toolbar for Selection
When the Source for Initial Graphics Content is set to an Explicit selection, the
graphics toolbar will contain three additional items: Zoom to Selection, Select Box,
and Deselect Box. This is shown in the figure below (the Deselect Box is to the right
of the Select Box).

For more information on selections, see “Selections” on page 74.

Graphics Toolbar for Plot Groups
The figure below shows the standard graphics toolbar as it appears when a 3D Plot
Group node is used as a Source for Initial Graphics Content.

Custom Graphics Toolbar Buttons
In the Toolbar section, you can also add custom buttons to the graphics toolbar.
Use the buttons under the table to add or remove custom toolbar buttons (items).
You can also move toolbar buttons up or down, add a Separator, and Edit a button.
The figure below shows a standard graphics toolbar for results with four additional
buttons to the right.
 | 69

The figure below shows the corresponding table of graphics toolbar items.
70 |

To edit the command sequence for a toolbar item, click the Edit button to open
the Edit Custom Toolbar Button dialog box.

This dialog box has settings that are similar to those of a button. For details, see
“Button” on page 51.
 | 71

Views
In the graphics toolbar, the Go to Default 3D View button (for 3D graphics only)
will display a menu with all applicable views. The currently active view is indicated
with a check mark.

In addition to a list of all views, there is an option Reset Current View that will reset
the currently active view to the state it had when the application was launched.

ANIMATIONS

You can display animations in an application by creating a link to the graphics
object that is used in the Model Builder as the Subject (source) for an Animation.
You create such a link by following these steps:
• In the Model Builder, add an Animation node under the Export node using

the Player option.
• Ensure that the Target is set to Player and the Subject is set to a plot group

that is used as a Source for Initial Graphics Content for the graphics object
where you wish to run the animation.
72 |

• Create a button, menu, ribbon, or toolbar item with a Run command applied
to the Export Animation node.

Setting the Target as Player ensures that the animation is run in the same graphics
window as the Subject plot group, instead of being exported to a file. The input
argument to the Export Animation command can be used to specify in which
graphics object the animation should be run. If the input argument is left empty,
then the animation will be run in the same graphics window as the Subject plot
group, if any. Note that this only applies if Target is set to Player.
 | 73

SELECTIONS

Selections in the Model Builder
In the Model Builder, named selections let you group domains, boundaries,
edges, or points when assigning material properties, boundary conditions, and
other model settings. You can create different types of selections by adding
subnodes under the Component > Definitions node. These can be reused
throughout a model component.
As an example of how selections can be used, consider selections for boundary
conditions. When you select which boundaries should be associated with a certain
boundary condition, you can click directly on those boundaries in the graphics
window of the COMSOL Desktop environment. This is the default option called
Manual selection (see below). These boundaries will then be added to a selection
that is local to that boundary condition. Named selections instead let you define
global selections that can be reused for several different kinds of boundary
conditions by just selecting from a drop-down list. The figure below shows an
Explicit selection given the name Inlet Surfaces with two associated boundaries (22
and 88).
74 |

The figure below shows the Settings window for an Inlet boundary condition
where the Inlet Surfaces selection is used. In this example, there is also an Outlet
Surfaces selection.

For convenience, in addition to the Manual option, there is also a shortcut for All
boundaries.

Selections in the Application Builder
The Explicit selection type lets you group domains, boundaries, edges, or points
based on entity number, and is the type of selection most readily available for use
with the Application Builder. You can allow the user of an application to
interactively change which entities belong to an Explicit selection with a Selection
Input object or a Graphics object. In the example below, the embedded model has
a boundary condition defined with an Explicit selection. Both a Selection Input
 | 75

object and a Graphics object are used to let the user select boundaries to be excited
by an incoming wave.

The user can here select boundaries by clicking directly in the graphics window,
corresponding to the Graphics object, or by adding geometric entity numbers in a
list of boundary numbers corresponding to a Selection Input object.
To make it possible to directly select a boundary by clicking on it, you can link a
graphics object to an Explicit selection, as shown in the figure below. Select the
Explicit selection and click Use as Source. In the figure below, there are two Explicit
76 |

selections, Excitation Boundary and Exit Boundary, and the graphics object
graphics2 is linked to the selection Excitation Boundary.

When a graphics object is linked directly to a selection in this way, the graphics
object displays the geometry and the user can interact with it by clicking on the
boundaries. The boundaries will then be added (or removed) to the
corresponding selection.
To make it possible to select by number, you can link a Selection Input object to
an explicit selection. For more information, see “Selection Input” on page 241.
You can let a global Event be triggered by an Explicit selection. This allows a
command sequence or method to be run when the user clicks a geometry object,
domain, face, edge, or point. For more information on using global events, see
“Events” on page 117 and “Source For Data Change Event” on page 120.

Input Field

An Input Field allows a user to change the value of a parameter or variable. In the
New Form wizard, when a parameter or variable is selected, three form objects are
created:
• A Text Label object for the parameter or variable description.
• An Input Field object for the value.
• A Unit object (if applicable) that carries the unit of measure.
 | 77

By selecting a parameter or variable using the Editor Tools window, the same three
form objects are created.
Assuming you do not use the Editor Tools window: To insert an additional input
field, use the Insert Object menu in the ribbon and select Input Field. In the Form
editor, you link an input field to a certain parameter or variable by selecting it from
the tree in the Source section and click Use as Source. In the Source section of the
Settings window, you can also set an Initial value. The figure below shows the
Settings window for an input field.

In addition to parameters and variables, input fields can use an Information node
as Source.
78 |

The default setting for the Initial value is From data source. This means that if the
source is a parameter, then the initial value displayed in the input field is the same
as the value of the parameter as specified in the Parameters node in the Model
Builder. The other Initial value option is Custom value, which allows an initial value
different from that of the source. If the Editable check box is cleared, then the
Initial value will be displayed by the application and cannot be changed.
You can add a Tooltip with text that is shown when hovering the mouse pointer
over the input field.
The header of the Source section contains two buttons for easy access to tools that
are used to make additional properties and variables available as sources to the
input field.

The Create New Variable and Use It as Source button can be used to add new
variables under the Declarations node. For more information, see “Declarations”
on page 124. The Switch to Model Builder and Activate Model Data Access button
can be used to access low-level model properties as described in the next section.
For more information on Model Data Access, see “Model Data Access in the Form
Editor” on page 88.

DATA VALIDATION

The Data Validation section of the Settings window for an input field allows you to
validate user inputs with respect to units and values.

When creating an input field in the New Form wizard, the setting Append unit to
number is used when applicable. This setting assumes that a user enters a number
into the input field, but it can also handle a number followed by a unit using the
COMSOL square bracket [] unit syntax. If the Unit expression is mm, then 1[mm]
is allowed, as well as any length unit, for example, 0.1[cm]. An incompatible unit
type will display the Error message. A parameter that has the expression 1.23[mm],
 | 79

and that is used as a source, will get the appended unit mm and the initial value
displayed in the edit field will be 1.23.
The Unit dimension check list has the following options:
• None

• Compatible with physical quantity

• Compatible with unit expression

• Append unit to number (default)
• Append unit from unit set

A value or expression can be highlighted in orange to provide a warning when the
user of an application enters an incompatible unit, which is any unit of measure
that cannot be converted to the units specified in the Data Validation settings.
Enable this feature by selecting Compatible with physical quantity or Compatible
with unit expression. In addition, the user will see a tooltip explaining the unit
mismatch, as shown in the figure below.

If there is a unit mismatch, and if no further error control is performed by the
application, the numeric value of the entered expression will be converted to the
default unit. In the above figure, 9[kg] will be converted to 9[m].
A button Add Unit Label is available to the right of the Unit dimension check list.

Clicking this button will add a unit label to the right of the input field if there is
not already a unit label placed there.
The None option does not provide unit validation.
80 |

Numerical Validation
The options Append unit to number, Append unit from unit set, and None allow you
to use a filter for numerical validation of the input numbers.

The Filter list for the option None has the following options:
• None

• Double

• Integer

• Regular expression

The Filter list for the options Append unit to number and Append unit from unit set
only allows for the Double and Integer options.
The Double and Integer options filter the input based on Minimum and Maximum
values. If the input is outside of these values, the Error message is displayed. You
may use global parameters in these fields. If global parameters are used, you can
define such parameters with or without units. If you use global parameters without
a unit, then only the numerical value of these parameters is considered when they
are used as Minimum and Maximum values. For example, consider data validation
of an input field for a length parameter L with unit cm. Further, assume that a
global parameter Lmax is used as the Maximum value. If you would like the
maximum value of L to be 15 cm, then the following values for the parameter Lmax
will work: 15 (with no unit), 15[cm], 0.15[m], 150[mm], etc.
For the Append unit from unit set option, the Minimum and Maximum values are
always with respect to the Initial value for the unit set by the unit set. For more
information on unit sets, see “Unit Set” on page 136.
The Regular expression option, available when the Unit dimension check is set to
None, allows you to use a regular expression for matching the input string. For
more information on regular expressions, see the dynamic help. Click the help
icon in the upper-right corner of a window and search for “regular expression”.
For more advanced requirements, note that virtually any kind of validation of the
contents of an input field can be made by calling a method using the Events section
in the Settings window of an input field.
 | 81

Error Message
You can customize the text displayed by the Error message. During the
development and debugging of an application, it can sometimes be hard to deduce
from where such errors originate. Therefore, when using Test Application,
additional debugging information is displayed, as shown in the figure below.

The debugging information typically consists of the type of form object, the path
to the form object, and the reason for the failure; for example, 5<=x<=10.
No extra information is added when launching an application by using Run
Application or COMSOL Server.

NUMBER FORMAT

The Number Format section contains a check box Use input display formatting. If
selected, it enables the same type of display formatting as a Data Display object.

For more information, see “Data Display” on page 85.
82 |

APPEARANCE

In addition to color and font settings, the Appearance section for an input field
contains a Text alignment setting that allows the text to be Left, Center, or Right
aligned.

Whether the input field should be Visible or Enabled is controlled from the check
boxes under the State subsection. For more information, see “Changing the
Enabled and Visible State of a Form Object” on page 62.

Unit

In the Settings window for a Unit object, you can set the unit to a fixed string, or
link it to an input field. Click the Go to Source button to the right of the unit Label
 | 83

list to show, in the form, the input field object to which it is linked. The figure
below shows the Settings window for a unit object.

When adding an input field using the New Form wizard, a unit object is
automatically added when applicable. By default, the unit is displayed using
Unicode rendering. As an alternative, you can use LaTeX rendering by selecting
the LaTeX markup check box. Then, the display of units will not depend upon the
selected font.

Text Label

A Text Label object simply displays text in a form. When adding an input field using
the New Form wizard, a Text Label object is automatically added for the
description text of the associated parameter or variable. There is a check box
84 |

allowing for Multiline text. If selected, the Wrap text check box is enabled. The
figure below shows the Settings window for a Text Label object.

To insert an additional Text Label, use the Insert Object menu in the ribbon and
select Text Label.

Data Display

A Data Display object is used to display the numerical values of scalars and arrays.
If there is an associated unit, it will be displayed as part of the Data Display object.

SOURCE

In the Settings window for a data display object, in the Source section, select a
node in the model tree. Then click the Use as Source button shown below. Valid
parameters, variables, and properties include:
• The output from a Derived Values node, such as a Global Evaluation or a Volume

Maximum node
 | 85

• Variables declared under the Declarations > Scalar, 1D Array, and 2D Array
nodes

• Properties made available by using the Model Data Access tool; See “Model
Data Access in the Form Editor” on page 88

• One of the following Information node variables, which are under the root
node and under each Study node:
- Expected Computation Time

This is a value that you enter in the Expected field in the Settings window of
the root node.

- Last Computation Time (under the root node)
The is the last measured computation time for the last computed study.

- Last Computation Time (under a study node)
This is the last measured computation time for that study.

When you start an application for the first time, the last measured times are
reset, displaying Not available yet.

USING THE NEW FORM WIZARD FOR GENERATING DATA DISPLAY OBJECTS

In the New Form wizard in the Inputs/outputs tab, only the Derived Values nodes
will generate Data Display objects. Variables under Declarations and constants made
available with Model Data Access will instead generate Input Field objects.
When a Derived Values node is selected, two form objects are created based on the
corresponding Derived Values node variable:
• a Text Label object for the Description of the variable
• a Data Display object for the value of the variable

The settings for these form objects can subsequently be edited. To insert
additional data display objects, use the Insert Object menu in the ribbon and select
Data Display.

NUMBER FORMAT

The Number Format section lets you set the Precision, Notation, and Exponent.
86 |

The figure below shows an example with data display objects for the variables Coil
resistance and Coil inductance. A formatted unit label is automatically
displayed as part of the object if applicable.

RENDERING METHOD

By default, the unit of a data display object is displayed using Unicode rendering.
As an alternative, you can use LaTeX rendering by selecting the LaTeX markup
check box. Then, the data display does not rely on the selected font.
A formatted display of arrays and matrices is only supported with LaTeX
rendering. The figure below shows a 2D double array (see page 132) displayed
using a Data Display object with LaTeX markup selected.
 | 87

You can add a Tooltip with text that is shown when hovering over the data display
object.

Model Data Access in the Form Editor

The Settings window of many types of form objects has a section that allows you
to select a node in a tree structure that includes the model tree, or parts of the
model tree. Examples include the Source section of an input field or the Choose
Commands to Run section of a button. There are many properties in the model tree
that are not made available by default, because a model typically contains hundreds
or even thousands of properties, and the full list would be unwieldy. However,
these “hidden” properties may be made available to your application by a
technique called Model Data Access.
The remainder of this section gives an introduction to using Model Data Access,
with examples for input fields and buttons.

MODEL DATA ACCESS FOR INPUT FIELDS

By default, you can link input fields to parameters and variables defined in the
model tree under the Parameters or Variables nodes and to variables declared in
the application tree under the Declarations node. To access additional model tree
node properties, click the Switch to Model Builder and Activate Model Data Access
button in the header of the Source section of the input field Settings window, as
shown in the figure below.

You can also access it from the Application group of the Home tab of the Model
Builder.
88 |

Then, when you click on a model tree node, check boxes appear next to the
individual settings. In the figure below, the check box for an Electric potential
boundary condition is selected:
 | 89

The figure below shows the Settings window for an input field. The list of possible
sources for this field now contains the Electric potential.

MODEL DATA ACCESS FOR BUTTONS

Model Data Access can be used for buttons to set the value of a parameter,
variable, or a model property. For example, you can create buttons for predefined
mesh element sizes. The settings shown in the figure below are available when, in
the Settings window of the Mesh node, the Sequence type is set to User-controlled
90 |

mesh. In this example, the Predefined property for Element Size has been made
available and then selected.
 | 91

The figure below shows the Settings window for a button used to create a mesh
with Element Size > Predefined set to Fine.

In the above example, a Set Value command is used to set the value of the
Predefined mesh size (hauto) property. The property Predefined mesh size (hauto)
corresponds to the following settings in the Size node shown earlier:

PREDEFINED MESH SIZE VALUE

Extremely fine 1

Extra fine - Extra coarse 2-8

Extremely coarse 9
92 |

The value of the hauto property is a double and can take any positive value. For
non-integer values, linear interpolation is used for the custom mesh parameters.
You can, for example, let a slider object adjust the predefined mesh size. For more
information on the slider object, see “Slider” on page 255.
In general, for individual model tree properties, you can quickly learn about their
allowed values by recording code while changing their values and then inspecting
the automatically generated code. For more information, see “Recording Code”
on page 153.
You can also use a combo box object to give direct access to all of the options from
Extremely fine through Extremely coarse. For more information, see “Combo Box”
on page 188.

SUMMARY OF MODEL DATA ACCESS

The table below summarizes the availability of Model Data Access for form objects
and events, as well as menu, toolbar, and ribbon items.

FORM OBJECT, EVENT, OR ITEM SECTION IN SETTINGS WINDOW

Input Field Source

Button Choose Commands to Run

Toggle Button, Menu Toggle Item,
and Ribbon Toggle Item

Source and Choose Commands to Run

Check Box Source

Combo Box Source

Data Display Source

Graphics (Graphics Toolbar Item) Choose Commands to Run

Form Collection Active Pane Selector

Tiled or Tabbed

Card Stack Active Card Selector

Information Card Stack Active Information Card Selector

Radio Button Source

Text Source

List Box Source

Slider Source

Toolbar (Toolbar Item) Choose Commands to Run

Menu Item Choose Commands to Run
 | 93

A global event, menu, ribbon, or toolbar item provides a Choose Commands to Run
section in its Settings window, to which the functionality described above in the
section on buttons also applies. Global events and many form objects provide a
Source section in its Settings window, and the functionality described above in the
section on input fields applies. For information on global events, menus, ribbons,
and toolbar items, see “Graphics Toolbar” on page 68, “The Main Window” on
page 110, “Events” on page 117, “Table” on page 250, and “Toolbar” on page
258.

Sketch and Grid Layout

The Form editor provides two layout modes for positioning form objects: sketch
layout mode and grid layout mode. The default is sketch layout mode, which lets
you use fixed positions and sizes of objects in pixels. Use grid layout mode to
position and size objects based on a background grid with cells. In grid layout
mode, a form is divided into a number of intersecting rows and columns, with
at most one form object at each intersection. This layout mode is recommended
for designing a resizable user interface, such as when designing an application to
be run in a web browser on multiple platforms.

SKETCH LAYOUT

Switch between sketch and grid layout mode by clicking Sketch or Grid in the
Layout group in the ribbon.

Ribbon Item Choose Commands to Run

Event (Global) Choose Commands to Run

Source for Data Change Event

FORM OBJECT, EVENT, OR ITEM SECTION IN SETTINGS WINDOW
94 |

The Sketch group in the Form tab has two options: Show Grid Lines and Arrange.
The Arrange menu allows you to align groups of form objects relative to each
other.

Sketch Grid
The Show Grid Lines option displays a sketch grid to which objects are snapped.
Note that the grid used in sketch layout mode is different from the grid used in
grid layout mode. The default setting for sketch layout mode is to show no grid
lines. Without grid lines visible, a form object being dragged is snapped relative to
the position of the other form objects.
If the Show Grid Lines option is selected, the upper left corner of a form object
being dragged is snapped to the grid line intersection points.

In the Settings window of the form, you can change the settings for the sketch
grid:
• Column width
 | 95

• Row height

• Align grid to margin

• Snap zone

- A slider allows you to change the snap zone size from Small to Large.
• Snap only to grid

- Clear this check box to snap both to the grid and the position of other form
objects.

Position and Size
The sketch layout mode is pixel based, and the positioning of form objects is
indicated as the coordinates of the top-left corner of the form object measured
from the top-left corner of the screen. The x-coordinate increases as the object
moves to the right, and the y-coordinate increases as the object moves from the
top of the screen to the bottom. You can set the absolute position of a form object
in the Position and Size section of its Settings window.

Form objects are allotted as much space as required, or as specified by their Width
and Height values. Form objects are allowed to overlap.
96 |

GRID LAYOUT

Switch to grid layout mode by clicking Grid in the Layout group in the ribbon.

The buttons and menus in the ribbon Grid group give you easy access to
commands for:
• Changing the row and column growth rules between Fit, Grow, and Fixed,

which determine the layout when the user interface is resized (Row Settings
and Column Settings).

• Inserting or removing rows and columns (Insert and Remove).
• Aligning form objects within grid cells (Align).
• Merging and splitting cells (Merge Cells and Split Cells).
• Extracting a rectangular array of cells as a subform and inserting it into a new

form (Extract Subform).
• Defining the number of rows and columns (Rows & Columns).

The Form Settings Window and the Grid
After switching to grid layout mode, the form window shows blue grid lines.
 | 97

To define the number of rows and columns, click the Rows & Columns button in
the ribbon.

The section Grid Layout for Contained Form Objects in the Settings window shows
column widths and row heights.

To interactively select a form, as displayed in the Form editor, click the top-left
corner of the form.

A blue frame is now shown. To interactively change the overall size of a form, you
can drag its right and bottom border. The form does not need to be selected for
this to work.
Note that if you switch from sketch to grid layout mode, all rows and columns will
have the setting Fit and the handles for the frame will not be displayed. If any of
the rows and columns have the Height or Width setting set to Grow, then the frame
will display handles for resizing in the vertical or horizontal direction, respectively.
98 |

The size of the interactively resized frame will affect the initial size of the form only
if the Initial size setting is set to Automatic. The size of the frame will also affect the
initial size of the Main Window if its Initial size setting is set to Use main form’s size.

Rows and Columns
Click the leftmost cell of a row to select it. The leftmost cells are only used for
selecting rows; form objects cannot be inserted there. When a row is selected, the
Row Settings menu as well as the Insert and Remove commands are enabled in the
ribbon tab. The figure below shows the fourth row highlighted.
 | 99

Similarly, to select a column, click the cell at the top. This cell cannot contain any
form objects. The figure below shows the third column highlighted. In this case,
the Column Settings menu is enabled in the ribbon tab.

The Row Settings and the Column Settings have the same three options:
• Fit sets the row height or column width to the smallest possible value given

the size of the form objects in that row or column.
• Grow sets the row height or column width to grow proportionally to the

overall size of the form.
• Fixed sets a fixed value for the number of pixels for the row height or column

width.

You can interactively change the row height and column width by dragging the
grid lines.

In this case, the number of pixels will be displayed and the Row Settings or Column
Settings growth policy will be changed automatically to Fixed.
100 |

As an alternative to changing the Row Settings or Column Settings from the ribbon,
you can right-click in a row or column and select from a menu.

The menu shown when right-clicking a row or column also gives you options for
inserting, removing, copying, pasting, and duplicating rows or columns.

Cells
Click an individual cell to select it. A selected cell is shown with deeper blue grid
lines.

You can select Merge Cells and Split Cells to adjust the cell size and layout of your
form objects.
 | 101

When in grid layout mode, you can specify the margins that are added between
the form object and the borders of its containing cell.

In the Settings window of a form object, the Position and Size section has the
following options for Cell margin:
• None

- No cell margins
• From parent form (default)

- The margins specified in the Settings window of the form; See “Inherit
Columns and Cell Margins” on page 107

• Custom

- Custom margins applied only to this form object

If the Horizontal alignment or Vertical alignment is set to Fill and the growth policy
of the column or row allows the form object to be resized, then you can specify a
minimum width or height, respectively. The minimum size can be set to manual
or automatic. The manual option lets you specify a pixel value for the minimum
size. The automatic option allows for a minimum size of zero pixels, unless the
form object contents require a higher value. The minimum size setting is used at
run time to ensure that scrollbars are shown before the form object shrinks below
its minimum size.
102 |

Aligning Form Objects
The Align menu gives you options for aligning form objects within a cell. You can
also let a form object dynamically fill a cell horizontally or vertically.

As an alternative, you can right-click a form object and select from a context menu.

Drag and Drop Form Objects
You can drag and drop form objects to move them. Click a form object to select
it, and then drag it to another cell that is not already occupied with another form
object.
 | 103

If you drop the object in an already occupied cell, then the objects switch places.

Automatic Resizing of Graphics Objects
In order to make the graphics object of an application resizable, follow these steps:
• Change the layout mode of the form containing the graphics object from

sketch to grid layout mode.
• Change the Height setting for any row covering the graphics object to Grow.

To change this, click the leftmost column of the row you would like to
access. Then, change the Height setting in the Settings window of the form.
Alternatively, right-click and select Grow Row.

• Change the Width for any column covering the graphics object to Grow. To
change this, right-click the uppermost row of the column you would like to
access and select Grow Column.

• Select the graphics object and change both the Horizontal alignment and
Vertical alignment to Fill. You can do this from the Settings window or by
right-clicking the graphics object and selecting Align > Fill Horizontally and
Align > Fill Vertically.
104 |

Following the steps above, you may find it easier to make graphics objects
resizable by performing grid layout mode operations, such as adding empty rows
and columns as well as merging cells. If you are already in grid layout mode, then
a graphics object will default to Fill in both directions.

Extracting Subforms
You can select a rectangular array of cells in a form and move it to a new form.
First, select the cells by using Ctrl+click or Shift+click.

Then, click the Extract Subform button in the ribbon.
 | 105

This operation creates a new form with the selected cells and replaces the original
cells with a form object of type Form. In the Settings window of the subform, the
Form reference points to the new form containing the original cells.
106 |

Inherit Columns and Cell Margins
By using subforms, you can organize your user interface, for example, by grouping
sets of input forms. The figure below shows part of a running application with two
subforms for Beam dimensions and Reinforcement bars.

For more information on adding subforms to a form, see the previous section and
“Form” on page 220.
When aligning subforms vertically, as in the example above, you may want to
ensure that all columns are of equal width. For this purpose, you can use the
Inherit columns option in the Settings window of a subform. The figure below
shows part of the Settings window for the Beam dimensions subform (left) with
Name geometry_beam and for the Reinforcement bars subform (right) with Name
 | 107

geometry_rebars. The geometry_rebars subform has its Inherit columns set to
geometry_beam.

In the subsection Cell margins, you can specify the Horizontal and Vertical margins
that are added between form objects and the borders of their containing cells.
These settings will affect all form objects contained in the form, with their
individual Cell margins set to From parent form; See “Cells” on page 101.

Copying Between Applications

You can copy and paste forms and form objects between multiple COMSOL
Multiphysics sessions running simultaneously. You can also copy and paste within
one session from the current application to a newly loaded application.
In grid layout mode, a cell, multiple cells, entire rows, and entire columns may be
copied between sessions.
108 |

When you copy and paste forms and form objects between applications, the copied
objects may contain references to other forms and form objects. Such references
may or may not be meaningful in the application to which they are copied. For
more information on the set of rules applied when pasting objects, see “Appendix
B — Copying Between Applications” on page 261.
When copying and pasting between applications, a message dialog box will appear
if a potential compatibility issue is detected. In this case, you can choose to cancel
the paste operation.
 | 109

The Main Window

In the application tree, the Main Window node represents the main window of an
application and is also the top-level node for the user interface. It contains the
window layout, the main menu specification, and an optional ribbon specification.

GENERAL

The Settings window contains a General section with settings for:
• Title

• Show filename in title

• Icon

• Menu type

• Status bar

The Title is the text at the top of the main window in an application, with the Icon
shown to the far left of this text. By default, the Title is the same as the title of the
model used to create the application. Keep the check box Show filename in title
110 |

selected if you wish to display the file name of the application to the left of the
Title.
In the Icon list, select an image from the library or add an image (*.png) from
the local file system to the library and use it as an icon. If you add a new image,
it will be added to the image library and thereby embedded into the application.
You can also export an icon by clicking the Export button to the right of the
button Add Image to Library and Use Here.
The Main Window node of the application tree has one child node, named Menu
Bar. Using the Menu type setting, you can change this child node from Menu Bar
to Ribbon.
The Status bar list controls what is shown in the status bar. Select Progress to
display a progress bar when applicable (the default), or None. Note that you can
also create custom progress bars by using methods.

MAIN FORM

The Main Form section contains a reference to the form that the main window
displays. This setting is important when using a form collection because it
determines which form is displayed as the main window when the application is
opened for the first time.

SIZE

In the Size section, the Initial size setting determines the size of the main window
when the application is first started. There are three options:
• Maximized results in the window being maximized when the application is

run.
• Use main form's size uses the size of the main form; See “The Individual Form

Settings Windows” on page 41. The main form is defined by the Main Form
section. This option further adds the size required by the main window
itself, including: the window frame and title bar, main menu, main toolbar,
and ribbon. This size is computed automatically and depends on whether
the menu type is Menu bar or Ribbon.

• Manual lets you enter the pixel size for the width and height. In this case,
nothing is added to the width and height. When using this option, you need
to ensure that there is enough room for the window title, ribbon, and
menu bar.

For more information on the option Use main form’s size, see “The Form Settings
Window and the Grid” on page 97.
 | 111

ABOUT DIALOG

The About Dialog section contains settings for customizing parts of the About This
Application dialog box, which contains legal information. The Placement option
lets you choose between Automatic, File menu, Ribbon, or Lower-right corner. The
Lower-right corner option will place a hyperlink to the About This Application dialog
box in the lower-right corner of the application user interface. If selected, the
check box Show COMSOL information will display COMSOL software version and
product information. Any text entered in the Custom text field will be displayed
above the legal text in the dialog box. In the Custom text field, words containing
http or www will be interpreted as hyperlinks, if possible. For example,
http://www.comsol.com or www.comsol.com will be replaced with a hyperlink.

Menu Bar and Toolbar

The Menu Bar node can have Menu child nodes that represent menus at the top
level of the Main Window.
112 |

For the Menu Bar option, you can also add a Toolbar. The Toolbar node and the
Menu nodes have the same type of child nodes.

MENU, ITEM, AND SEPARATOR

The child nodes of the Menu and Toolbar nodes can be of type Menu, Item, Toggle
Item, or Separator, exemplified in the figure below:

A Menu node has settings for Name and Title.
 | 113

A Menu node can have child Menu nodes that represent submenus.
A Separator displays a horizontal line between groups of menus and items, and has
no settings.
The Settings window for an Item node is similar to that of a button and contains a
sequence of commands. Just like a button, an item can have associated text, an
icon, and a keyboard shortcut. For more information, see “Button” on page 51.
In a similar way, the Settings window for a Toggle Item node is similar to that of a
toggle button.
The figure below shows the Settings window for an Item associated with a method
for creating a report.
114 |

The figure below shows an example of an application with a File menu.

When running an application in the COMSOL Desktop environment, a Close
Application menu item is always present.
The Settings window for the Save As item is shown in the figure below.

You can enable and disable ribbon, menu, and main toolbar items from methods.
For more information, see “Appendix E — Built-in Method Library” on page
285.
 | 115

Ribbon

You can opt to add a Ribbon to the Main Window instead of a Menu Bar. The Ribbon
node contains the specifications of a ribbon with toolbars placed on one or several
tabs. For the Ribbon option, a File menu is made available directly under the Main
Window node.

RIBBON TAB AND RIBBON SECTION

Child nodes to the Ribbon node are of the type Ribbon Tab. Child nodes to a Ribbon
Tab are of the type Ribbon Section. Child nodes to a Ribbon Section can be of the
type Item, Toggle Item, Menu, or Separator.
Item and Menu provide the same functionality as described previously for the Menu
Bar and Toolbar. A Separator added as a child to a Ribbon Section is a vertical line
that separates groups of Items and Menus in the running application. A Separator
is displayed as a horizontal line in the application tree. The figure below shows an
example.
116 |

Events

An event is any activity (for example, clicking a button, typing a keyboard
shortcut, loading a form, or changing the value of a variable) that signals a need
for the application to carry out one or more actions. Each action can be a sequence
of commands of the type described earlier, or may also include the execution of
methods. The methods themselves may be local methods associated with
particular form objects or global methods that can be initiated from anywhere in
the application. The global methods are listed in the Methods node of the
application tree. The local methods are defined in the Settings windows of the
forms or form objects with which they are associated. When a form object has an
associated method, it may be opened for editing by performing a Ctrl+Alt+click
on the object. If the Ctrl+Alt+click is performed on a form object that has no
method, then a new local method, associated with the object, will be created and
opened for editing.
The events that initiate these actions may also be global or local. The global events
are listed in the Events node of the application tree and include all events that are
triggered by changes to the various data entities, such as global parameters or
string variables. Global events can also be associated with the startup and
shutdown of the application. The local events, like local objects, are defined in the
Settings windows of the forms or form objects with which they are associated.
Event nodes trigger whenever the source data changes, regardless of if it is changed
from a method, form object, or in any other way. Events associated with form
objects only trigger when the user changes the value in the form object.
 | 117

Events at Startup and Shutdown

Global or local methods can be associated with the events at startup (On startup)
and shutdown (About to shutdown) of an application. To access these events, click
the Events node in the application tree.

A shutdown event is triggered when:
• The user of an application closes the application window by clicking the Close

Application icon in the upper-right corner of the application window
• The Exit Application command is issued by a form object
• A method is run using the command exit()

A method run at a shutdown event can, for example, automatically save critical
data or prompt the user to save data. In addition, a method run at a shutdown
event may cancel the shutdown by returning a Boolean true value.
Note that a method that is used for initializing graphics, such as Zoom Extents,
needs to be run as an On load event for a form and not as a global On startup event.

Global Events

Right-click the Events node and choose Event to add an event to an application.
An event listens for a change in a running application. If a change occurs, it runs
118 |

a sequence of commands. In the figure below, when the value of the string variable
SpanWidth is changed, the method setResultsStatus is run.

Note that since this type of event has global scope and is not associated with a
particular form, the full path: /form1/graphics1 needs to be used when
referencing graphics objects.
The following two sections describe the options available in the Settings window
of an event.
 | 119

SOURCE FOR DATA CHANGE EVENT

This section presents a filtered view of the tree from the Application Builder
window. The nodes represent some sort of data or have children that do.
You can extend the list of available data nodes by clicking on the Switch to Model
Builder and Activate Model Data Access button in the header of the section Source
For Data Change Event.

For more information, see “Model Data Access in the Method Editor” on page
151.
Note that Explicit selections are also allowed as Source for Data Change Event. This
allows a command sequence or a method to be run when the user clicks a
geometry object, domain, face, edge, or point. The figure below shows a dialog
120 |

box for a global event that opens a form panel as a dialog box when the user
changes the contents of the Explicit selection named Outlet.

CHOOSE COMMANDS TO RUN

In the Settings window for an Event, the section Choose Commands to Run is similar
to that of a button and allows you to define a sequence of commands. For more
information, see “Button” on page 51.
 | 121

Form and Form Object Events

Form and form object events are similar to global events, but are defined for forms
or individual form objects. These events have no associated list of commands, but
refer directly to one global or local method.

EVENTS TRIGGERED BY DATA CHANGE

For certain types of form objects, you can specify a method to run when data is
changed. This setting is available in the Events section of the form object, as shown
in the figure below.

The drop-down list On data change contains None (the default), any available
methods under the Methods node of the application tree, and a local method
(optional).
The form objects supporting this type of event are:
• Input Field

• Check Box

• Combo Box

• File Import
• Array Input
• Radio Button

• Text

• List Box

• Table

• Slider

Buttons have associated events triggered by a click. Menu, ribbon, and toolbar
items have associated events triggered by selecting them. The corresponding
action is a command sequence defined in the Settings window of a button object
or item. For more information on command sequences, see “Button” on page 51.

Selecting Multiple Form Objects
You can specify an On data change event for multiple form objects simultaneously
by using Ctrl+click and then selecting the method to run. In this way, you can, for
example, quickly specify that a data change event initiated by any of the selected
122 |

form objects should run a method that informs the user that plots and outputs are
invalid.

EVENTS TRIGGERED BY LOADING OR CLOSING A FORM

Forms can run methods when they are loaded (On load) or closed (On close).

This type of event is available in the Settings window of a form and is typically used
when a form is shown as a dialog box, or to activate forms used as panes in a form
collection. Note that a method that is used for initializing graphics, such as Zoom
Extents, needs to be run as an On load event for a form and not as a global On
startup event.

Using Local Methods

Events can call local methods that are not displayed in the application tree. For
more information on local methods, see “Local Methods” on page 163.
 | 123

Declarations

The Declarations node in the application tree is used to declare global variables,
which are used in addition to the global parameters and variables already defined
in the model. Variables defined under the Declarations node are used in form
objects and methods. In form objects, they store values to be used by other form
objects or methods. Variables that are not passed between form objects and
methods, but that are internal to methods, do not need to be declared in the
Declarations node. In methods, variables defined under the Declarations node have
global scope and can be used directly with their name. For information on how to
access global parameters defined in the model tree, see “Accessing a Global
Parameter” on page 173.
There are seven different types of declarations:
• Scalar

• Array 1D

• Array 2D

• Choice List
• File
• Unit Set
• Shortcuts

Right-click the Declarations node to access the declaration types or use the ribbon.

Note that Shortcuts are not created from this menu but by clicking the Create
Shortcut button next to the Name in the Settings window of a form object, or by
using Ctrl+K for a selected form object.
In addition, the first three types of declarations can be of the following data types:
• String

• Boolean
124 |

• Integer

• Double

In addition to right-clicking the Declarations node, you can click the Create New
Variable and Use it as Source button in the Source section of many types of form
objects.

This will open a dialog box that lets you quickly declare scalar variables.

USING DECLARATIONS AS INPUT ARGUMENTS TO COMMANDS

Certain commands used in the commands sequence of, for example, a button can
take an input argument. For more information, see “Button” on page 51.
 | 125

The figure below shows a command sequence that includes a Plot Temperature
command with an input argument form1/graphics.

You can use declarations as input arguments to commands.
To use a scalar variable, 1D array, or 2D array as input arguments, you use the
corresponding variable name. To access a single element of an array, or a row or
column of a 2D array, use indices. For example, to access the first component in
a 1D array my_variable, you use my_variable(1). A 2D array element can be
retrieved as a scalar by using two indices, e.g. my_matrix(2,3). The indices can
themselves be other declared variables, e.g. my_variable(n).
For commands requiring a graphics object as an input argument, only string type
declarations are allowed with appropriate indices, if necessary. If there is a graphics
object named graphics1 and also a string declaration named graphics1, then the
contents of the string declaration will be used. An exception is if single quotes are
used, such as ‘graphics1’, in which case the graphics object graphics1 is used.
This rule is also applied to other combinations of commands and input arguments.

THE NAME OF A VARIABLE

The Name of a variable is a text string without spaces. The string can contain
letters, numbers, and underscores. The reserved names root and parent are not
allowed and Java® programming language keywords cannot be used.
126 |

Scalar

Scalar declarations are used to define variables to be used as strings, Booleans,
integers, or doubles.

STRING

A scalar string variable is similar to a global parameter or variable in a model, but
there is a difference. A parameter or variable in a model has the restriction that its
value has to be a valid model expression, while a scalar string variable has no such
restrictions. You can use a string variable to represent a double, integer, or
Boolean by using conversion functions in a method. For more information, see
“Conversion Methods” on page 298. You can also use a string variable as a source
in many form objects, such as input fields, combo boxes, card stacks, and list
boxes.
The figure below shows the Settings window for the string variables
graphics_pane, email_to, and solution_state.

String declarations, as well as other declarations, can be loaded and saved from or
to a file by using the Load from File and Save to File buttons below the List of
Variables table.
The Load from File and Save to File buttons are used to load and save from/to the
following file formats:
• Text File (.txt)
 | 127

• Microsoft® Excel® Workbook (.xlsx)
- Requires LiveLink™ for Excel®

• CSV File (.csv)
• Data File (.dat)

The drop-down list where these file formats can be selected is shown in the figure
below.

To illustrate the use of declared strings, the figure below shows the Settings
window of a card stack object where the string variable viewCard is used as the
source (Active Card Selector).

For more information on using card stacks, see “Card Stack” on page 224.
128 |

BOOLEAN

You can use a Boolean variable as a source in check boxes, other form objects, and
methods. A Boolean variable can have two states: true or false. The default value
is false. The figure below shows the declaration of two Boolean variables.

Example Code
In the example code below, the Boolean variable bvar has its value controlled by
a check box. If bvar is true, then plot group 4 (pg4) is plotted in graphics1.
Otherwise, plot group 1 (pg1) is plotted.

if (bvar) {
 useGraphics(model.result("pg4"),"graphics1");
} else {
 useGraphics(model.result("pg1"),"graphics1");
}

 | 129

INTEGER AND DOUBLE

Integer and double variables are similar to strings, with the additional requirement
that the value is an integer or double, respectively.

Array 1D

The Array 1D node declares one or more named arrays of strings, Booleans,
integers, or doubles that you can access from form objects and methods. The
number of elements in a 1D array is not restricted in any way, and you can, for
example, use a 1D array to store a column in a table with a variable number of
rows. The Settings window contains a single table, where you specify one variable
130 |

array per row. In the figure below, two double arrays are declared, xcoords and
ycoords.

The values in the column New element value are assigned to new elements of the
array when a row is added to a table form object. Arrays for strings, Booleans, and
integers are similar in function to arrays of doubles.

INITIAL VALUES

The Initial values can be a 1D array of arbitrary length. To edit the initial values,
click the Edit Initial Values button below the List of Variables. This opens a dialog
box where the value of each component can be entered. See the figure below for
an example of a 1D array of doubles.
 | 131

ARRAY SYNTAX

An array definition must start and end with curly braces ({ and }) and each
element must be separated with a comma. When you need special characters inside
an array element (spaces and commas, for example), surround the element with
single quotes ('). The table below shows a few examples of 1D arrays:

Array 2D

The Array 2D node declares one or more 2D arrays that you can access using form
objects and methods. In the figure below, the 2D double array xycoords is
declared.

INITIAL VALUES

The default (or initial) value can be a 2D array of arbitrary size. To edit the initial
values, click the Edit Initial Values button below the List of Variables. This opens a

ARRAY SYNTAX RESULTING ARRAY

{1, 2, 3} A 3-element array with the elements 1, 2,
and 3

{} An empty array

{'one, two', 'three by four'} A 2-element array with elements containing
special characters

{{1, 2, 3},{'one, two', 'three by
four'}}

A 2-element array containing one 3-element
array and one 2-element array
132 |

dialog box where the value of each component can be entered. See the figure
below for an example of a 2D array of doubles.

ARRAY SYNTAX

The table below shows a few examples of 2D arrays:

For 2D arrays, rows correspond to the first index so that {{1,2,3},{4,5,6}} is
equivalent to the matrix:

1 2 3

4 5 6

Assuming that the above 2-by-3 matrix is stored in the 2D array variable arr, then
the element arr[1][0] equals 4.

Choice List

The Choice List node contains lists that can be used by combo boxes, radio
buttons, or list boxes. The Settings window for a choice list contains a Label, a
Name, and a table with a Value column and a Display name column. Enter the

ARRAY SYNTAX RESULTING ARRAY

{{}} An empty 3D array

{{'5','6'},{'7','8'}} A 2-by-2 matrix of strings

{{1, 2, 3}, {4, 5, 6}} A 2-by-3 matrix of doubles
 | 133

property value (Value) in the first column and the corresponding text to display to
the user (for example, in a combo box list) in the second column (Display name).
The Value is always interpreted as a string. In the example below, mat1 will become
the string “mat1” when returned from the combo box.

As an alternative to creating a choice list by right-clicking the Declarations node,
you can click the Add New Choice List button in the Settings window for form
objects that use such a list, as shown in the figure below.

ACTIVATION CONDITION

You can right-click the Choice List node to add an Activation Condition subnode.
Use an activation condition to switch between two or more choice lists contingent
on the value of a variable. For an example of using choice lists with activation
conditions, see “Using a Combo Box to Change Material” on page 196.
134 |

File

File declarations are primarily used for file import in method code when using the
built-in method importFile. For more information on the method importFile
and other methods for file handling, see “File Methods” on page 286. However,
an entry under the File declaration node can also be used by a File Import object.
The figure below shows the Settings window of a file declaration.

The file chosen by the user can be referenced in a form object or method using
the syntax upload:///file1, upload:///file2, etc. The file name handle
(file1, file2, etc.) can then be used to reference an actual file name picked by
the user at run time.
For more information on file declarations and file handling, see “Appendix C —
File Handling and File Scheme Syntax” on page 263.
 | 135

Unit Set

The Unit Set node contains lists that can be used by combo boxes, radio buttons,
or list boxes for the purpose of changing units. The Settings window for a unit set
contains two sections: Unit Groups and Unit Lists.

Each row in the Unit Groups table is a unit group that represents a collection of
units with a particular meaning in the context of the application user interface.
Each column represents a group of units labeled by a Value and a Display name.
Each row in the Unit Lists table is a unit list with columns containing units with
the same dimension; for example: mm, cm, dm, m, km. The headings of the Unit
Lists table are Name and the Display names are defined in the Unit Groups section.
A unit list specifies the possible units that a form object that references the Unit Set
can switch between when running the application.
The figure above demonstrates the use of a Unit Set for an application that allows
for switching between metric and imperial units. In this example, two unit groups
are defined: SI and Imperial. The Label of the Unit Set has been changed to Unit
System.
The Value column contains string values that represent the current choice of unit
group. These string values can be manipulated from methods. The Display name
136 |

column is the string displayed in the user interface. The Initial value list contains
the default unit group (SI in the example above).
In the example above, the Unit Lists table has three columns: Name, SI, and
Imperial. The SI and Imperial columns are created dynamically based on the groups
in the Unit Groups section. Each row in the table corresponds to a physical quantity
such as, in this example, length and potential. Each column in the table
corresponds to the allowed units of length and units of potential, respectively.
The figure below shows an example application where a combo box form object
is used to choose between the SI and Imperial unit groups.
 | 137

The figure below shows the Settings window of a combo box using the Unit Set of
the above example as the Source.

In this way, a Unit Set can be used instead of a Choice List to create a combo box
for unit selection. Instead of a combo box, you can use a list box or a radio button
object in a similar way.
138 |

The two figures below show the corresponding Settings windows for the two input
fields for Length and Applied voltage.

The Unit dimension check is set to Append unit from unit set. The Unit set is set to
Unit System {unitset1} (the user-defined label for the Unit Set declaration used in
this example). The Unit list is set to length and potential, respectively. When using
Append unit from unit set, the Numerical validation section (under Data Validation)
refers to the Initial value of a Unit Set; in this case, cm and mV, respectively. The
Minimum and Maximum values are scaled automatically when the application is run
and the unit is changed by the user of the application. For more information on
the settings for an input field object, see “Input Field” on page 77.
 | 139

The figures below illustrate the use of two Unit Set declarations for separately
setting the unit for length and potential, respectively.

The figures below show the corresponding Settings window for the Unit Set
declarations.

Note that, in this example, by using three Unit Set declarations, you can have
individual length unit settings for the Length and Width input fields. The figure
140 |

below shows such an example, where three combo boxes have been used to
replace the unit labels and each combo box uses a separate Unit Set declaration as
its source.

When more flexibility is required, you can combine the use of a Choice List and a
Unit Set. For example, for a combo box, you can use the Unit Set as the Selected
source (string) and select a Choice List that is not a Unit Set.

Shortcuts

Form objects and other user interface comments are referenced in methods by
using a certain syntax. For example, using the default naming scheme
form3/button5 refers to a button with the name button5 in form3 and
form2/graphics3 refers to a graphics object with the name graphics3 in form2.
You can also change the default names of forms and form objects. For example, if
form1 is your main form, then you can change its name to main.
To simplify referencing form objects as well as menu, ribbon, and toolbar items by
name, you can create shortcuts with a custom name. In the Settings window of an
object or item, click the button to the right of the Name field and type a name of
your choice.
 | 141

To create or edit a shortcut, you can also use the keyboard shortcut Ctrl+K.
All shortcuts that you create are made available in a Shortcuts node under
Declarations in the application tree.

In the Settings window for Shortcuts below, two shortcuts, plot_temp and
temp_vis, have been created for a button and a graphics object, respectively.

The shortcuts can be referenced in other form objects or in code in the Method
editor. The example below shows a shortcut, temp_vis, used as an input argument
to a temperature plot.

Shortcuts are automatically updated when objects are renamed, moved, copied,
and duplicated. They are available in application methods as read-only Java®
variables, just like string, int, double, and Boolean declarations.
Using shortcuts is recommended because it avoids the need to adjust method
editor code when the structure of the application user interface changes.
142 |

The Method Editor

Use the Method editor to write code for actions not included among the standard
run commands of the model tree nodes in the Model Builder. The methods may,
for example, execute loops, process inputs and outputs, and send messages and
alerts to the user of the application.
The Java® programming language is used to write COMSOL methods, which
means that all Java® syntax and Java® libraries can be used. In addition to the
Java® libraries, the Application Builder has its own built-in library for building
applications and modifying the model object. The model object is the data
structure that stores the state of the underlying COMSOL Multiphysics model
that is embedded in the application. More information on these built-in method
can be found in “Appendix E — Built-in Method Library” on page 285 and in the
Application Programming Guide.
The contents of the application tree in the Application Builder is accessed through
the application object, which is an important part of the model object. You can
record and write code using the Method editor that directly access and change
user interface aspects of the running application, such as button texts, icons,
colors, and fonts.
Methods can be global or local. Global methods are displayed in the application
tree and are accessible from all methods and form objects. A local method is
associated with a form object or event and can be opened from the corresponding
Settings window. For more information about local methods, see “Local
Methods” on page 163.

A number of tools and resources are available to help you create code for
methods. These are covered in the following sections, and will make you
more productive, for example, by allowing you to copy-paste or
autogenerate blocks of code.

Converting a Command Sequence to a Method

In the Form editor, click the Convert to New Method button displayed in the
Settings window below an existing command sequence. The command sequence
is automatically replaced by an equivalent method.
Consider a case where you have created a compute button and you want to be
alerted by a sound when the computation has finished. Now, we will see how this
could be done using the Method editor.
 | 143

You will also learn how to do this without using the Method editor later in this
section. The figure below shows the Settings window of the Compute button.

Click the Convert to New Method button below the command sequence.
144 |

The command sequence in this example is replaced by a method, method3.
Click the Go to Method button. The Method editor opens with the tab for method3
active.

In the Method editor, add a call to the built-in method playSound to play the
sound file success.wav, available in the COMSOL sound library, by using the
syntax shown in the figure below.

The newly added line is indicated by the green bar shown to the left.
 | 145

Note that in the example above, you do not have to use the Method editor. In the
command sequence, select the file success.wav under Libraries > Sounds and click
the Run command button under the tree, as shown in the figure below.

However, there are many built-in methods that do not have corresponding
command sequence nodes. For more information, see “Appendix E — Built-in
Method Library” on page 285.
146 |

FORM OBJECT WITH ASSOCIATED METHOD

A form object that has an associated method is indicated with a special icon, as
shown in the figure below. In this example, both the check box called Find prong
length and the Compute button have associated methods.

Performing Ctrl+Alt+Click on the form object opens the method in the Method
editor. If there is no method associated with the form object, a new local method
associated with the form object will be created and opened in the Method editor.
If the associated method has a compile error, then this is shown with a different
icon, as shown in the figure below.
 | 147

Language Elements Window

The Language Elements window in the Method editor shows a list of some
language constructs. Double-click or right-click one of the items in the list to
insert template code into the selected method.

See also “Language Element Examples” on page 170.

Editor Tools in the Method Editor

To display the Editor Tools window, click the corresponding button in the Main
group in the Method tab.

When using the Editor Tools window in the Method editor, you can right-click a
node in the editor tree to generate code associated with that node. Depending on
the node, up to eight different options are available:
• Get

• Set
148 |

• Set All

• Create

• Run

• Enable

• Disable

• Edit Node

Selecting one of the first seven options will add the corresponding code to the
currently selected method. The Edit Node option brings you to the Settings
window for the model tree node.
 | 149

The figure below shows an example of a node with six options.

When a node is selected, the toolbar below the editor tree shows the available
options for generating code.
The Editor Tools window is also an important tool when working with the Form
editor. For more information, see “Editor Tools in the Form Editor” on page 49.
150 |

KEYBOARD SHORTCUTS

Consider a method with a line of code that refers to a model object in the
following way:

model.result("pg3").feature("surf1").create("hght1", "Height");

If you position the mouse pointer in "surf1" and press F11 on the keyboard,
right-click and select Go to Node, or click Go to Node in the ribbon, then the
corresponding Surface plot note is highlighted in the Editor Tools window.
Click Edit Node to open its Settings window. For more information on keyboard
shortcuts, see “Appendix D — Keyboard Shortcuts” on page 283.

Model Data Access in the Method Editor

To access individual properties of a model tree node, click the Model Data Access
button in the Application section of the Model Builder ribbon tab.

Alternatively, for certain form objects, you can click the Model Data Access button
in the header of the Source section of the Settings window. See also “Model Data
Access in the Form Editor” on page 88.
Model Data Access needs to be enabled this way because a model typically contains
hundreds or even thousands of properties that could be accessed, and the list
would be too long to be practical.
When you click a model tree node, such as the Heat Flux node in the figure below,
check boxes appear next to the individual properties. This example is based on the
busbar tutorial model described in Introduction to COMSOL Multiphysics.
 | 151

In the figure below, the check boxes for Heat transfer coefficient and External
temperature are selected:
152 |

If you switch to the Editor Tools window, you will see additional nodes appear
under the Heat Flux node. Right-click and use Get or Set to generate code in an
active method window, as shown in the figure below.

In the example above, Get and Set for the Heat transfer coefficient and the External
temperature properties will generate the following code:

model.physics("ht").feature("hf1").getString("h");
model.physics("ht").feature("hf1").getString("Text");

model.physics("ht").feature("hf1").set("h", "htc");
model.physics("ht").feature("hf1").set("Text", "293.15[K]");

Recording Code

Click the Record Code button in the Code section of the Method editor ribbon to
record a sequence of operations that you perform using the model tree, as shown
in the figure below.
 | 153

Certain operations in the application tree can also be recorded, including methods
used to modify the user interface while the application is running such as changing
the color of a text label.
To record a new method, click the Record a New Method button in the Main section
of the Method editor ribbon.

While recording code, the COMSOL Desktop windows are surrounded by a red
frame:
154 |

To stop recording code, click one of the Stop Recording buttons in the ribbon of
either the Model Builder or the Application Builder.

The previous section on Model Data Access explained how to set the values of the
Heat transfer coefficient and the External temperature properties of the busbar
tutorial model. To generate similar code using Record Code, follow these steps:
• Create a simple application based on the busbar model (MPH file).
• In the Model Builder window, click Record a New Method, or with the Method

editor open, click Record Code.
• Change the value of the Heat transfer coefficient to 5.
• Change the value of the External temperature to 300[K].
• Click Stop Recording.
• If it is not already open, open the method with the recorded code.

The resulting code is listed below:
with(model.physics("ht").feature("hf1"));
 set("h", "5");
 set("Text", "300[K]");
 | 155

endwith();

In this case, the automatic recording contains a with() statement in order to make
the code more compact. For more information on the use of with(), see “The
With Statement” on page 172.
To generate code corresponding to changes to the application object, use Record
Code or Record a New Method, then go to the Form editor and, for example, change
the appearance of a form object. The following code corresponds to changing the
color of a text label from the default Inherit to Blue:

with(app.form("form1").formObject("textlabel1"));
 set("foreground", "blue");
endwith();

For more information on modifying the model object and the application object,
see the Application Programming Guide.
Use the tools for recording code to quickly learn how to interact with the model
object or the application object. The autogenerated code shows you the names of
properties, parameters, and variables. Use strings and string-number conversions
to assign new parameter values in model properties. By using Model Data Access
while recording, you can, for example, extract a parameter value using get, process
its value in a method, and set it back into the model object using set. For more
information on Model Data Access, see “Model Data Access in the Method Editor”
on page 151.

Checking Syntax

Click Check Syntax in the ribbon to see messages in the Errors and Warnings
window related to syntax errors or unused variables.
156 |

In addition to messages in the Errors and Warnings window, syntax errors are
indicated with a wavy red underline, as shown in the figure below.

Find and Replace

Click Find in the Quick Access Toolbar to open a dialog box used to find and
replace strings in methods, as shown in the figure below.

The Quick Access Toolbar is located above the ribbon to the left, in the
COMSOL Desktop user interface.
 | 157

The All tab is used to find strings and variables in both the Model Builder and the
Application Builder.

Model Expressions Window

The Model Expressions window in the Method editor shows a list of predefined
expressions used as input and output arguments. Double-click or right-click one
of the items in the list to insert an expression:
158 |

Extracting Variables

If you look at the example below, you will notice that each line of code has a
repeating prefix.

Readers familiar with object-oriented programming will recognize such a prefix as
the name of an object instance. The Extract Variable button simplifies code by
replacing these instances with a variable name.
In the example above, the mouse pointer has been positioned at the first
occurrence of feature. Click the Extract Variable button to transform the source
code into what is shown in the figure below.

The code starting with the prefix feature has been replaced with the variable
mslc1. When you click the Extract Variable button, an Extract Variable dialog box
opens where you can enter a suitable variable name in the Name field.
 | 159

Syntax Highlighting, Code Folding, and Indentation

Different language elements in the code are displayed using different styles. Refer
to the figure below for an example:

This example includes five styles:
• Keywords, such as if, else, for, while, double, and int are displayed in

bold blue font
• Built-in methods are displayed in italic blue font
• Strings are displayed in red font
• Comments are displayed in green font
• The remainder of the code is displayed in black font

You can customize the syntax highlighting theme in the Preferences dialog box.
See the next section “Method Editor Preferences”.
You can expand and collapse parts of the code corresponding to code blocks that
are part of for, while, if, and else statements. This feature can be disabled, as
described in the next section “Method Editor Preferences”.
When writing code, press the Tab key on your keyboard to automatically indent a
line of code and to insert white spaces where needed. Indentation and whitespace
formatting also happen automatically when the keyboard focus leaves the Method
editor. You can disable this behavior in Preferences in the Method section by
clearing the check box Indent and format automatically.
160 |

THE NAME OF A METHOD

The Name of a method is a text string without spaces. The string can contain
letters, numbers, and underscores. The reserved names root and parent are not
allowed and Java® programming language keywords cannot be used.

Method Editor Preferences

To access the Preferences for the methods, choose File > Preferences and select the
Methods section.

By default, the Method editor only shows the most relevant code. To see all code
in a method, select the View all code check box.
The check box Close brackets automatically controls whether the Method editor
should automatically add closing brackets, such as curly brackets {}, brackets [],
and parentheses ().
The check box Generate compact code using ‘with’ statements controls the
utilization of with statements in automatically generated code. For more
information, see “The With Statement” on page 172.
If the check box Enable code folding is selected, you can expand and collapse parts
of the code corresponding to code blocks associated with for, while, if, and else
statements.
Selecting the check box Indent and format automatically will ensure that code is
consistently indented and formated.
 | 161

Under Syntax highlighting, the Theme list contains two predefined themes, Modern
(the default) and Classic. Choose User defined to define a syntax highlighting mode
where the colors can be assigned to individual language elements.

Ctrl+Space and Tab for Code Completion

While typing code in the Method editor, the Application Builder can provide
suggestions for code completions. The list of possible completions are shown in a
separate completion list that opens while typing. In some situations, detailed
information appears in a separate window when an entry is selected in the list.
Code completion can always be requested with the keyboard shortcut Ctrl+Space.
When accessing parts of the model object, you will get a list of possible
completions, as shown in the figure below:

Select a completion by using the arrow keys to choose an entry in the list and press
the Tab or Enter key to confirm the selection.
If the list is long, you can filter by typing the first few characters of the completion
you are looking for.
For example, if you enter he first few characters of a variable or method name and
press Ctrl+Space, the possible completions are shown:

In the example above, only variables that match the string iv are shown. This
example shows that variables local to the method also appear in the completion
suggestions.
162 |

You can also use Ctrl+Space to learn about the syntax for the built-in methods that
are not directly related to the model object. Type the name of the command and
use Ctrl+Space to open a window with information on the various calling
signatures available.

For a list of available built-in methods, you can use the Language Elements window
described on page page 148 or see “Appendix E — Built-in Method Library” on
page 285.
The keyboard shortcut Ctrl+Space can also be used in the Model Builder. For
example, when typing in an Expression field in Results, use Ctrl+Space to see
matching variables, as shown in the figure below.

Local Methods

You can add local methods to buttons, menu items, and events. Local methods do
not have nodes displayed under the Methods node in the application tree. In the
 | 163

method window for a local method, its tab displays the path to its associated user
interface component, as shown in the figure below for the case of a check box
object.

In the Form editor, you can right-click a form object and select Create Local
Method from a menu, as shown in the figure below.
164 |

LOCAL METHODS FOR BUTTONS, MENU ITEMS, AND GLOBAL EVENTS

For buttons, ribbons, menus, toolbar items, and global events, you can add a local
method by clicking the Create Local Method toolbar button under the sequence of
commands, as shown in the figure below.

The function of this button is similar to the Convert to New Method button,
described in the section “Creating a New Method” on page 15. The only
difference is that it creates a local method not visible in the global method list in
the application tree. It also opens the new method in the Method editor after
creating it. Ctrl+Alt+Click can be used as a shortcut for creating the local method.
Clicking the button Go to Method will open the local method. The figure below
shows a call to a local method associated with a button.
 | 165

To avoid any risk of corrupting code in a local method, you are unable to use
Convert to New Method when there is a local method present in the command
sequence.

LOCAL METHODS FOR FORM AND FORM OBJECT EVENTS

To add a local method for a form or form object event, click the Create Local
Method button in the Events section of the Settings window. The selected On data
change method changes from None to Local method, as shown in the figure below,
and the Method editor is opened.

To open an existing local method in the Method editor, click the Go to Source
button. Click the Remove Local Method button to delete the local method.
As an alternative to Ctrl+Alt+Click, you can right-click a form object and select
Edit Local Method from its context menu.

For more information, see “Events” on page 117.

Methods with Input and Output Arguments

A method is allowed to have several input arguments and one output argument.
You define input and output arguments in the Settings window of an active
method window. If the Settings window is not visible, click Settings in the Method
tab of the ribbon. The figure below shows a method with two input arguments,
var and coords, and one output, coordsout. The method adds random values to
166 |

the array, coords. The degree of randomness is controlled by the input variable
var. The new values are stored in the array coordsout.

When you call another method from a method, Ctrl+Alt+Double-Click opens the
window for that method. A method is allowed to call itself for the purpose of
recursion.
 | 167

Debugging

For debugging purposes, click in the gray column to the left of the code line
numbers to set breakpoints, as shown in the figure below.

In the ribbon, the Debug group contains the tools available for debugging
methods. When you run the application, the method will stop at the breakpoints.
Click the Step button to go to the next line in the method. The figure above shows
a method currently stopped at the line highlighted in yellow.
Click Continue to run the method up until the next breakpoint. Click Stop to stop
running the method. Click Step Into to step into the next method, if possible. Use
Remove All to remove all break points. Instead of removing, you can disable all
168 |

break points by clicking Disable All. Click the Debug Log to display debugging
messages in a separate Debug Log window, as shown in the figure below.

Use the debugLog command to display the value of variables in the Debug Log
window. The code below illustrates using the debugLog command to display the
values of strings and components of a 1D double array.

int len=xcoords.length;
if (selected==0) {
 for (int i = 0; i < len; i++) {
 double divid=double(i)/len;
 xcoords[i] = Math.cos(2.0*Math.PI*divid);
 ycoords[i] = Math.sin(2.0*Math.PI*divid);
 debugLog("x:");
 debugLog(xcoords[i]);
 debugLog("y:");
 debugLog(ycoords[i]);
 debugLog("selected is 0");
 }
}

 | 169

For more information on built-in methods for debugging, see “Debug Method”
on page 294.

Stopping a Method

You can stop the execution of a method while testing an application by using the
keyboard shortcut Ctrl+Pause. A dialog box appears, as shown below.

The Model Object

The model object provides a large number of methods, including methods for
setting up and running sequences of operations. The Convert to Method, Record
Code, Editor Tools, and Language Elements utilities of the Method editor produce
statements using such model object methods. For more information and example
code related to the model object and its methods, see “Appendix C—Language
Elements and Reserved Names” in the book Introduction to COMSOL
Multiphysics, the Application Programming Guide, as well as the Programming
Reference Manual.

Language Element Examples

The Java® programming language is used to write COMSOL methods, which
means that Java® statements and syntax in general can be used. For more
information, see the Application Programming Guide and the Programming
Reference Manual.
170 |

UNARY AND BINARY OPERATORS IN THE MODEL OBJECT

The table below describes the unary and binary operators that can be used when
accessing a model object, such as when defining material properties and boundary
conditions, and in results, expressions used for postprocessing and visualization.

UNARY AND BINARY OPERATORS IN METHODS (JAVA® SYNTAX)
The table below describes the most important unary and binary operators used in
Java® code in methods.

PRECEDENCE LEVEL SYMBOL DESCRIPTION

1 () {} . grouping, lists, scope

2 ^ power

3 ! - + unary: logical not, minus, plus

4 [] unit

5 * / binary: multiplication, division

6 + - binary: addition, subtraction

7 < <= > >= comparisons: less-than, less-than or equal,
greater-than, greater-than or equal

8 == != comparisons: equal, not equal

9 && logical and

10 || logical or

11 , element separator in lists

PRECEDENCE LEVEL SYMBOL DESCRIPTION

1 ++ -- unary: postfix addition and subtraction

2 ++ -- + - ! unary: addition, subtraction, positive sign,
negative sign, logical not

3 * / % binary: multiplication, division, modulus

4 + - binary: addition, subtraction

5 ! Logical NOT

6 < <= > >= comparisons: less than, less than or equal,
greater than, greater than or equal

7 == != comparisons: equal, not equal

8 && binary: logical AND

9 || binary: logical OR

10 ?: conditional ternary
 | 171

ACCESSING A VARIABLE IN THE DECLARATIONS NODE

Variables defined in the Declarations node are available as global variables in a
method and need no further declarations.

BUILT-IN ELEMENTARY MATH FUNCTIONS

Elementary math functions used in methods rely on the Java® math library. Some
examples:

Math.sin(double)
Math.cos(double)
Math.random()
Math.PI

THE IF STATEMENT

if(a<b) {
 alert(toString(a));
} else {
 alert(toString(b));
}

THE FOR STATEMENT

// Iterate i from 1 to N:
int N=10;
for (int i = 1; i <= N; i++) {
 // Do something
}

THE WHILE STATEMENT

double t=0,h=0.1,tend=10;
while(t<tend) {
 //do something with t
 t=t+h;
}

THE WITH STATEMENT

// Set the global parameter L to a fixed value
with(model.param());
 set("L", "10[cm]");

11 = += -= *= /=
%= >>= <<= &=
^= |=

assignments

12 , element separator in lists

PRECEDENCE LEVEL SYMBOL DESCRIPTION
172 |

endwith();

The code above is equivalent to:
model.param().set("L", "10[cm]");

ACCESSING A GLOBAL PARAMETER

You would typically use the Editor Tools window for generating code for setting
the value of a global parameter. While in the Method editor, right-click the
parameter and select Set.
To set the value of the global parameter L to 10 cm:

model.param().set("L", "10[cm]");

To get the global parameter L and store it in a double variable Length:
double Length=model.param().evaluate("L");

The evaluation is in this case with respect to the base Unit System defined in the
model tree root node.
To return the unit of the parameter L, if any, use:

String Lunit=model.param().evaluateUnit("L");

To write the value of a double to a global parameter, you need to convert it to a
string. The reason is that global parameters are model expressions and may contain
units.
Multiply the value of the variable Length with 2 and write the result to the
parameter L including the unit of cm.

Length=2*Length;
model.param().set("L", toString(Length)+"[cm]");

To return the value of a parameter in a different unit than the base Unit System,
use:

double Length_real = model.param().evaluate("L","cm");

If the parameter is complex valued, the real and imaginary part can be returned as
a double vector of length 2:

double[] realImag = model.param().evaluateComplex("Ex","V/m");

COMPARING STRINGS

Comparing string values in Java® has to be done with .equals() and not with the
== operator. This is due to the fact that the == operator compares whether the
strings are the same objects and does not consider their values. The below code
demonstrates string comparisons:

boolean streq=false;
String a="string A";
String b="string B";
 | 173

streq=a.equals(b);
// In this case streq==false

streq=(a==b);
// In this case streq==false

b="string A";
streq=a.equals(b);
// In this case streq==true

ALERTS AND MESSAGES

The methods alert, confirm, and request display a dialog box with a text string
and optional user input. The following example uses confirm to ask the user if a
direct or an iterative solver should be used in an application. Based on the answer,
the alert function is then used to show the estimated memory requirement for
the selected solver type in a message dialog box:

String answer = confirm("Which solver do you want to use?",
"Solver Selection","Direct", "Iterative");
if(answer.equals("Direct")) {
 alert("Using the direct solver will require about 4GB of memory when
solving.");
} else {
 alert("Using the iterative solver will require about 2GB of memory when
solving.");
}

174 |

Libraries

In the application tree, the Libraries node contains images, sounds, and files to be
embedded in an MPH file so that you do not have to distribute them along with
the application. In addition, the Libraries node may contain Java® utility class
nodes and nodes for external Java® and C libraries.

The embedded files can, for example, be referenced in form objects or in methods
by using the syntax embedded:///file1, embedded:///file2, and so on. For
example, to reference the image file compute.png, use the syntax
embedded:///compute.png.
Note that you are not required to have the file extension as part of the file name;
instead, arbitrary names can be used. To minimize the size of your MPH file,
delete unused images, sounds, or other files.

To manage files loaded by the user of an application at run time, you have
several options, including using File declarations and File Import form
objects. For more information on files to be loaded at run time, see “File”
on page 135, “File Import” on page 228, and “Appendix C — File
Handling and File Scheme Syntax” on page 263.

Images

The Images library contains a number of preloaded sample images in the PNG file
format. If you wish to embed other image files, click the Add File to Library button
below the List of Images. A large selection of images is available in the COMSOL
installation folder in the location data/images. Images are used as icons and can
 | 175

be referenced in image form objects or in methods. For images used as icons, two
sizes are available: 16-by-16 pixels (small) and 32-by-32 pixels (large).

Supported image formats are JPG, GIF, BMP, and PNG.
To preview an image, click the name of the image in the List of Images. The image
is displayed in the Preview section, as shown in the figure below.
176 |

To export a selected image, click the Export Selected Image File button to the right
of the Preview button.

Sounds

The Sounds library contains a few preloaded sounds in the WAV file format. If you
wish to embed other sound files, click the Add File to Library button below the List
of Sounds. A larger selection of sounds is available in the COMSOL installation
folder in the location data/sounds.

To play a sound, click the name of the sound and then click the Preview button
below the List of Sounds.
Click the Export Selected Sound File button to the right of the Preview button to
export a selected sound.
To play a sound in an application, add a command in the Settings window of a
button, ribbon, menu, or toolbar item. In the Choose Commands to Run section,
 | 177

select the sound and click the Run button below the tree. This adds a Play
command to the command sequence, as shown in the figure below.

In methods, you can play sounds using the built-in method, playSound, such as:
playSound("success.wav");
178 |

Files

The Files library is empty by default. Click the Add File to Library button to embed
files of any type in your application.

Click the Export Selected File button to the right of the Add File to Library button
to export a selected file.

The embedded files can be referenced in a method by using the syntax
embedded:///data1.txt, embedded:///data2.txt, and so on. For more
information, see “File” on page 135, “Appendix C — File Handling and File
Scheme Syntax” on page 263, and “File Methods” on page 286.
 | 179

Appendix A — Form Objects

This appendix provides information about forms and form objects and expands
upon the section “The Form Editor” on page 40. The items followed by a * in the
following list have already been described in detail in that section. The remaining
items are discussed in this appendix.

List of All Form Objects

• Input
- Input Field*
- Button*
- Toggle Button
- Check Box
- Combo Box

• Labels
- Text Label*
- Unit*
- Equation
- Line

• Display
- Data Display*
- Graphics*
- Web Page
- Image
- Video
- Progress Bar
- Log
- Message Log
- Results Table
180 |

• Subforms
- Form
- Form Collection
- Card Stack

• Composite
- File Import
- Information Card Stack
- Array Input
- Radio Button
- Selection Input

• Miscellaneous
- Text
- List Box
- Table
- Slider
- Hyperlink
- Toolbar
- Spacer

Toggle Button

A Toggle Button object is a button with two states: selected and deselected, as
shown in the figure below.

The information in this section is also applicable to Menu Toggle Item and Ribbon
Toggle Item.

USING A TOGGLE BUTTON TO ENABLE AND DISABLE A HEAT SOURCE

The two states of a toggle button are stored by linking it to a Boolean variable.
The figure below shows the Settings window of a button that enables and disables
 | 181

a heat source depending on its state. The Boolean variable heat_source is selected
in the Source section.

Enabled corresponds to the Boolean variable heat_source being equal to true,
which in turn corresponds to the toggle button being selected. Disabled
corresponds to the Boolean variable heat_source being equal to false, which in
turn corresponds to the toggle button being deselected.
182 |

Below the Source section is the Choose Commands to Run section, with a choice for
Action that represents two different commands for Select and Deselect. The figure
below shows the Settings window for Deselect with a command Disable Heat Source.
 | 183

The next figure shows the command sequence for Select with a command Enable
Heat Source.

A toggle button is similar to a check box in that it is linked to a Boolean variable.
For a toggle button, you define the action by using a command sequence, whereas
for a check box, you define the action by using an event. This is described in the
next section.

Check Box

A Check Box has two values: on for selected and off for cleared. The state of a
check box is stored in a Boolean variable in the Declarations node.
184 |

USING A CHECK BOX TO CONTROL VISUALIZATION

The figure below is from an application where a deformation plot is disabled or
enabled, depending on whether the check box is selected.

The screenshot on the left shows the running application. The screenshot on the
right shows the corresponding form objects in grid layout mode.
In the example below, the state of the check box is stored in a Boolean variable
deformation, whose Settings window is shown in the figure below.
 | 185

The figure below shows the Settings window for the check box.

You associate a check box with a declared Boolean variable by selecting it from the
tree in the Source section and clicking Use as Source.
The text label for a check box gets its name, by default, from the Description field
of the Boolean variable with which it is associated.
The Initial value of the variable deformation is overwritten by the Value for
selected (on) or the Value for cleared (off) and does not need to be edited. When
used in methods, the values on and off are aliases for true and false, respectively.
These values can be used as Booleans in if statements, for example.
The code statements below come from a local method that is run for an On data
change event when the value of the Boolean variable deformation changes.

model.result("pg1").feature("surf1").feature("def").active(deformation);
useGraphics(model.result("pg1"), "graphics1");
186 |

USING A CHECK BOX TO ENABLE AND DISABLE FORM OBJECTS

The figure below shows a part of an application where certain input fields are
disabled or enabled, depending on if the check box is selected.

The figure below shows the Settings window for a check box associated with a
Boolean variable findlength used to store the state of the check box.

The code statements below come from a local method that is run for an On data
change event when the value of the Boolean variable findlength changes.

setFormObjectEditable("main/inputfield1", !findlength);
setFormObjectEditable("main/inputfield5", findlength);
setFormObjectEnabled("main/inputfield5", findlength);
setFormObjectEditable("main/inputfield6", findlength);
setFormObjectEnabled("main/inputfield6", findlength);
solution_state = "inputchanged";
 | 187

Combo Box

A Combo Box can serve as either a combination of a drop-down list box and an
editable text field or as a drop-down list box without the capability of editing.

USING A COMBO BOX TO CHANGE PARAMETERS IN RESULTS

To illustrate the use of a combo box, consider an application where the user selects
one of six different mode shapes to be visualized in a structural vibration analysis.
This example uses a Solid Mechanics physics interface with an Eigenfrequency
study and is applicable to any such analysis.
These six mode shapes correspond to six different eigenfrequencies that the user
selects from a combo box:

In this example, the combo box is used to control the value of a string variable
mode. The figure below shows the Settings window for this variable.
188 |

Selecting the Source
The figure below shows the Settings window for this combo box.

In the Source section, you select a scalar variable that should have its value
controlled by the combo box and click Use as Source. In the Initial values list of the
Settings window of the combo box, choose a method to define a default value for
the combo box. The options are First allowed value (the default) and Custom
default. For the Custom default option, enter a default value in the associated field.
The default value that you enter must exist among the allowed values.

Choice List
The vibrational modes 1–6 correspond to trivial rigid body modes and are not of
interest in this application, hence the first mode of interest is 7. A choice list allows
you to hide the actual mode values in the model from the user by only displaying
the strings in the Display name column; the first nonrigid body modes are named
Fundamental tone, Overtone 1, Overtone 2, etc.
 | 189

In the section for Choice List, you can add choice lists that contribute allowed
values to the combo box. The Choice List declaration associated with this example
is shown in the figure below.

The string variable mode is allowed to have one of these six values: 7, 8, 9, 10, 11,
or 12. The text strings in the Display name column are shown in the combo box.
In the Settings window of the combo box, you can select the Allow other values
check box to get a combo box where you can type arbitrary values. Such combo
boxes can accept any value and are not restricted to the values defined by the
choice lists. In this example, however, only six predefined values are allowed.
For more information on choice lists, see “Choice List” on page 133.

Events
In the Events section, specify a method to run when the value of the combo box,
and thereby the string variable used as the source, is changed by the user. In the
present case, the value of the variable mode is changed, and a local method is run,
as shown below.

The code for the local method is listed below.
with(model.result("pg1"));
 set("looplevel", new String[]{mode});
endwith();
model.result("pg1").run();
190 |

This code links the value of the string mode to the Eigenfrequency setting in the
Plot Group pg1. In this case, the string svar takes the values "7", "8", "9", "10",
"11", or "12".
The code above can be generated automatically by using the recording facilities of
the Method editor:
• Go to the Model Builder and click Record a New Method.
• By default, when using an Eigenfrequency study for a structural mechanical

analysis, a Mode Shape plot group is created. In this plot group, change the
Eigenfrequency from mode 7 to mode 8. In the figure below, this corresponds
to changing from 440 Hz to 632.89 Hz in the Settings window for the Mode
Shape plot group.

• Click Stop Recording.

The resulting code is shown below.
with(model.result("pg1"));
 set("looplevel", new String[]{"8"});
endwith();
model.result("pg1").run();

Now change the string ”8” with the variable mode to end up with the code listing
above. This will be stored in a method, say, method1. To create the local method
 | 191

associated with the combo box, copy the code from method1. Then, delete
method1.

Using Model Data Access
A quicker, but less general way, of using a combo box is to use Model Data Access
in combination with Editor Tools. For the example used in this section, you start
by enabling Model Data Access and, in the Settings window of the Mode Shape plot
group, select the Eigenfrequency, as shown in the figure below.

In the Editor Tools window, the Eigenfrequency parameter is visible as Loop Level.
To create a combo box, right-click Loop Level and select Input.

The generic name Loop Level is used for a solution parameter. If a solution has two
or more parameters, then there are two or more loop levels to choose from.
192 |

The figure below shows the Settings window of the corresponding combo box.

The choice list Loop Level is automatically generated when inserting a combo box
using Editor Tools. Note that a choice list generated in this way is not displayed
under the Declarations node and cannot be modified by the user. For greater
flexibility, such as giving names to each parameter or eigenfrequency value, you
need to declare the choice list manually, as described in the previous section.

USING A COMBO BOX TO CHANGE TIMES

The time parameter list specified in a Time Dependent study step can be used in
many places under the Results node. In an application, the individual time
parameters can be accessed in a similar way to what was described in the last
section for parameters, by using Model Data Access in combination with Editor
Tools.
 | 193

In the Settings window in the figure below, Model Data Access has been used to
access the Time parameter list in a temperature plot.

In Editor Tools, a handle to the Time list is now available, as shown in the figure
below.
194 |

By selecting Input, you can create a combo box using it as Source, as shown in the
figure below.

The combo box can be used for multiple purposes, for example, to update a plot
corresponding to a different time parameter. In order for a plot to automatically
update when a user uses the combo box to select a new time parameter, add an
event to the combo box at the bottom of its Settings window. In the figure below,
a method plot_T is called for updating a temperature plot.

The line of code below shows the contents of the method plot_T:
model.result("pg1").run();
 | 195

The end result is a combo box in the application user interface, shown in the figure
below, which automatically updates a temperature plot when the user selects a new
value for the Time list.

USING A COMBO BOX TO CHANGE MATERIAL

Consider an application where combo boxes are used to select the material. In this
case, an activation condition (see “Activation Condition” on page 134) can also
be used for greater flexibility in the user interface design.
The figure below shows screenshots from an application where the user can choose
between two materials, Aluminum or Steel, using a combo box named Material. A
second combo box called Alloy shows a list of Aluminum alloys or Steel alloys,
according to the choice made in the Material list.
196 |

The material choice is implemented in the embedded model using global materials
and a material link, as shown below.

Each material is indexed with a string: mat1, mat2, ..., mat5. An event listens for
changes to the value of the global variable alloy, where the value is controlled by
a combo box. When the value is changed, the method listed below is run.

with(model.material("matlnk1"));
 set("link", alloy);
endwith();
 | 197

The figure below shows the declaration of two string variables, material and
alloy, which are controlled by the Material and Alloy combo boxes, respectively.

The application utilizes three choice lists: Aluminum Alloys, Steel Alloys, and
Material.

Activation Condition
An activation condition is used for the Aluminum Alloys and Steel Alloys choice lists,
as shown in the figure below.
198 |

The Settings window for the Material combo box is shown below.

Note that the Material combo box uses the material string variable as its source.
The Material choice list is used to define a discrete set of allowed values for the
 | 199

material string variable. The Settings window for the Material choice list is shown
below.
200 |

The Settings window for the Alloy combo box is shown in the figure below.
 | 201

Note that the Alloy combo box uses both the Aluminum Alloys and the Steel Alloys
choice lists. The choice list for Aluminum Alloys is shown in the figure below.
202 |

The activation condition for the Aluminum Alloys choice list is shown in the figure
below.

USING A COMBO BOX TO CHANGE ELEMENT SIZE

When creating a combo box, you can use the Model Data Access functionality to
reproduce the features of a combo box that exists within the Model Builder. For
 | 203

example, consider an application where a combo box is used to change the
element size in a mesh, as in the figure below.

Switch to the Model Builder and select the Mesh node (we assume here that the
model has just a single mesh). In the Settings window of the Mesh node, select
User-controlled mesh (if not already selected). In the Size node, directly under the
Mesh node, select the option Predefined. Click Model Data Access in the ribbon.
This gives access to the combo box for a predefined element size, as shown in the
figure below.

Select the green check box to the left of the list to make it available as a source for
a combo box in the Application Builder. Then, when you return to the Application
Builder, you will find that the choice list for mesh size is now revealed as a
potential Source in the Settings for a new combo box.
204 |

To insert the combo box object, you have two alternatives:
• Select Combo Box from the Insert Object menu in the ribbon. In the Settings

window for the combo box, select the node Predefined size (hauto) in the
Source section and then click the Use as Source button.

• In the Editor Tools window, select the node Predefined size (hauto) under the
Mesh > Size node. Then right-click and select Input, as shown in the figure
below.
 | 205

The corresponding Settings window for the combo box is shown in the figure
below.

Changing the Initial value to From data source ensures that the element size setting
of the model, in this case Normal, is used as the default element size in the
application. The choice list, Predefined size (hauto), from the Model Builder is now
selected as the choice list for your combo box in the Application Builder. This
choice list does not appear as a choice list under the Declarations node of the
application tree because it is being referenced from the Model Builder. Therefore,
if you want a list with a more limited set of choices, you cannot edit it. Instead,
you have to remove the predefined list as the Source of your combo box and create
a new choice list of your own by declaring it under the Declarations node. For
206 |

example, you can create a choice list with three entries, as shown in the figure
below.

To learn which values are used by the Element size list in the model, use Record a
New Method and change the value from Normal to Fine, then to Coarse, and then
back to Normal. Click Stop Recording and read the values in the autogenerated
code. The Element size property name is hauto and the values for Fine, Normal, and
Coarse are 4, 5, and 6, respectively, as implied by the automatically generated code
shown in the lines below.

with(model.mesh("mesh1").feature("size"));
 set("hauto", "4");
 set("hauto", "6");
 set("hauto", "5");
endwith();

The hauto property can also take non-integer values. For more information on
Element size, see “Model Data Access for Buttons” on page 90.

USING A UNIT SET INSTEAD OF A CHOICE LIST

If the combo box will be used for the purpose of changing units, then a Unit Set
can be used instead of a Choice List (you still select it in the Choice List section of
the Settings window of the combo box).
 | 207

Equation

An Equation object can display a LaTeX equation by entering the expression in the
Enter equation in LaTeX syntax field.

A preview is shown of the rendered LaTeX syntax after leaving the text field.
208 |

Line

Use the Line form object to add a horizontal or vertical line to a form, which can
be used, for example, to separate groups of form objects. For the horizontal line
option, you can also add text that appears within the line.
 | 209

Web Page

A Web Page object can display the contents of a web page as part of the user
interface.

You can specify the page source in four different ways from the Source list:
• Use the default option Page to enter HTML code in a text area below the

list, enclosed by the <html> and </html> start and end tags.
• Use the URL option to link to a web page on the Internet.
• Use the File option to point to a local file resource containing HTML code.

Type the name of the file in the File field or click Browse to locate the file on
the local file system.

• Use the Report option to embed an HTML report. The Browser preview is
not active for this option.
210 |

Image

Use an Image form object to add an image to a form. An image object is different
from a graphics object in that an image object is not interactive. Choose an image
file from one of the library images, accessible from a drop-down list, or by clicking
the Add Image to Library and Use Here button to select a file from the local file
system. The figure below shows the Settings window for an image object
referencing the image cube_large.png, defined in the Libraries node.

If you select an image file from your file system, this file will be embedded in the
application and added to the list of Images under the Libraries node.
While you can change the x- and y-position of the image, the width and height
settings are determined by the image file.

You can paste images from the clipboard to a form window by using
Ctrl+V. For example, you can copy and paste images from the
PowerPoint® slide presentation software. Such images will be added
automatically to the Images library and embedded in the application. The
names for pasted images are automatically set to: pasted_image_1.png,
pasted_image_2.png, etc.

Video

A Video object embeds a video file in a form. The supported video file formats are
MP4 (.mp4), OGV (.ogv), and WebM (.webm).
 | 211

After added to a form, the Video object is represented, in the Form editor by an
image, as shown in the figure below.

The figure below shows the Settings window for the Video object.

The available settings are:
• Show video controls
• Start automatically
• Repeat
• Initially muted

The option Show video controls enables the video controls such as Play and Stop.
The option Initially muted is intended for the case where you want to play a video
with the sound initially turned off. For example, if the video is set to start
automatically, it can be useful to let the user choose whether the sound should be
on. The user can enable the sound either from the video controls, if the check box
Show video controls is selected, or by right-clicking in the video player.
212 |

Progress Bar

A Progress Bar object displays a customized progress bar, or set of progress bars,
based on a value that is updated by a method. Use a progress bar to provide
feedback on the remaining run time for an application. The figure below shows
the Settings window of a progress bar object with one progress level.

Note that the built-in progress bar that is visible in the status bar of an application
is controlled by the Settings window of the Main Window node. By default, the
built-in progress bar shows the progress of the built-in COMSOL Multiphysics
core algorithms, such as geometry operations, meshing, and solving. By using the
setProgress method, you can customize the information shown in the built-in
progress bar. For more information, see “Progress Methods” on page 296 and the
Application Programming Guide.
 | 213

The figure below shows the Settings window of a progress bar object with two
progress levels.

In this example, the progress bar object is part of a form progressform used to
present a two-level progress bar and a message log.
The figure below shows the corresponding progress dialog box in the running
application.
214 |

The figure below shows the form progressform.

The code segments below show typical built-in methods used to update the
progress bar and the message log.

// show progress dialog box:
dialog("progressform");
setProgressBar("/progressform/progress1", 0, "Computing prong length.");

// code for iterations goes here:
lastProgress = 20;
// ...

// update message log:
message("Iteration Number: " + k);
message("Frequency: " + Math.round(fq*100)/100.00);
message("Length: " + Math.round(L1*100)/100.00);

// update progress bar:
setProgressInterval("Computing frequency", lastProgress,
k*100/MAXITERATIONS);
// more code goes here:
// ...

// finished iterating:
setProgressBar("/progressform/progress1", 100);
closeDialog("progressform");

In the example above, the central functionality for updating the two levels of
progress bars lies in the call
 | 215

setProgressInterval("Computing frequency", lastProgress,
k*100/MAXITERATIONS).

For detailed information on the built-in methods and their syntax, see “Progress
Methods” on page 296 and the Application Programming Guide.

Log

The Log form object adds a log window that displays messages from the built-in
COMSOL Multiphysics core algorithms, such as geometry operations, meshing,
and solving.
The Include standard log toolbar check box is selected by default. When selected,
the toolbar in the Log window that you see in the COMSOL Desktop is included
in the application.

The figure below shows a part of an application user interface containing a log
window.
216 |

Message Log

The Message Log object adds a window where you can display messages to inform
the user about operations that the application carries out. Implement this feature
using the built-in message method with syntax: message(String message). See
also “GUI-Related Methods” on page 291.

The Include standard message log toolbar check box is selected by default. When
selected, the toolbar in the Messages window that you see in the COMSOL
Desktop is included in the application. The Show COMSOL messages check box is
selected by default to enable messages from the built-in COMSOL Multiphysics
core algorithms, such as geometry operations, meshing, and solving. Clear the
check box to only allow messages from the application itself.
 | 217

The figure below shows a customized message window with convergence
information from a method (left) and the corresponding Message Log form object
(right).

Results Table

The Results Table object is used to display numerical results in a table.
218 |

The source of the results table data is one of the child nodes to Derived Values or
Tables under Results. In the figure below, a Table node is used as the source (by
selecting this option in the tree and then clicking Use as Source.)

RESULTS TABLE TOOLBAR

The Include standard results table toolbar check box is selected by default. When
selected, a toolbar is included that provides the following buttons:
• Full Precision

• Automatic Notation

• Scientific Notation

• Decimal Notation

• Copy Table and Headers to Clipboard

• Export

The Export button is used to export to the following file formats:
• Text File (.txt)
• Microsoft® Excel® Workbook (.xlsx)

- Requires LiveLink™ for Excel®

• CSV File (.csv)
• Data File (.dat)
 | 219

This is shown in the figure below.

CONTROLLING RESULTS TABLES FROM METHODS

There is a built-in method useResultsTable() for changing which table is shown
in a particular results table form object. For more information on this built-in
method, see “GUI-Related Methods” on page 291.

Form

A form object of the type Form is used to organize a main form in one or more
subforms. To embed a subform, you create a link to it by selecting the form you
would like to link to from the Form reference of the Settings window for the
subform. The figure below shows an example where one of the cells of the form
main has a link to the form input.
220 |

The figure below shows the referenced form input.

If you are using grid layout mode, then you can quickly create subforms using the
Extract Subform button in the ribbon. See “Extracting Subforms” on page 105.
 | 221

Form Collection

A Form Collection object consists of several forms, or panes, presented in a main
form. In this example, there are four forms that appear as tabs in a single main
window.

There are four different layout options. From the Type list, choose between:
• Tabs, the default setting, which displays the forms using tabbed panes.
• List, which displays a list to the left of the form panes, where you can select

the form to display.
• Sections, which displays each form in a separate section.
• Tiled or tabbed, which displays the forms in one of two ways depending on

the value of a Boolean variable. For more information, see the description
later in this section.

In the Panes section, in the Use selected forms as panes list, each form represents a
pane. These will be displayed in the application in the order they appear in the list.
You can change the order by clicking the Move Up and Move Down buttons to the
right.
You can control which tab (or list entry) is active by linking to a string variable in
the section Active Pane Selector.
The string variable needs to be equal to one of the form names in the form
collection, such as temperature or conversion in the example above. Otherwise,
it will be ignored.
222 |

If you change the value of the pane selector pane in the above example, in a
method that will be run at some point (a button method, for example), then the
pane with the new value will be activated, as shown in the example below.

pane=”conversion”; /* Activate the conversion pane on completion of this
method */

For a form collection with the Type set to Sections, the Active Pane Selector has no
effect. Using an Active Pane Selector is optional and is only needed if you wish to
control which tab is active by some method other than clicking its tab. To remove
a string variable used as an Active Pane Selector, click the Clear source toolbar
button under the tree.
The Tiled or tabbed option displays the forms in one of two ways depending on
the value of a Boolean variable used as source in a Tiled or Tabbed section at the
top of the Settings window.

The tabbed mode is identical to a form collection with the Type set to Tabs. In
tiled mode, all the forms are shown simultaneously in a grid. The layout for
the tiled mode can be controlled by the settings in the subsection Tiled mode
settings.
 | 223

Card Stack

A Card Stack is a form object that contains cards. A Card is another type of form
object, one that is only used in the context of a card stack. Flip between cards in
a card stack to show one at a time. You associate a card stack with a data source
that controls which card to show. Each card specifies a value that is compared
against the data source of the card stack. The card stack shows the first card with
the matching value. If no cards match, nothing is shown.

USING A CARD STACK TO FLIP BETWEEN GRAPHICS OBJECTS

Consider an application where the graphics shown to the user depend on the value
of a scalar variable. This variable may change when a user clicks, for example, a
radio button. The variable may also change depending on a computed value; for
example, the value of a Global Evaluation node in the model tree.
The figure below shows the card stack object in the Form editor.

In this example, the card stack contains cards with graphics objects.
224 |

The figure below shows a card stack Settings window with five cards and a string
variable display as its Active Card Selector.

By clicking a row in the table of cards in the Cards section, followed by clicking
one of the toolbar buttons below the table, you can perform the following
operations on cards:
• Delete

• Edit

• Add Card

• Duplicate

Each row in the table contains the name of the card in the Card column and their
associated activating values in the Activating value column. The stack decides
which cards to display based on their activating values. In this example, the
activating values are the strings geometry, velocity, particle1, etc.
 | 225

Clicking the Add Card button displays the following dialog box.

By default, the Card type is set to Local, which means that the card is defined locally
in its containing card stack object. If the Card type is set to Existing form, then you
can instead select one of the existing forms. The settings for an Existing form are
accessed directly from the Form editor by clicking its node or by clicking the Edit
button in the Card section of the corresponding card stack Settings window.
The figure below shows the Settings window of a Card as shown after clicking Edit
in the table in the section Cards.
226 |

To access locally defined cards, right-click the card stack in a form window to
select between the different cards in the card stack, as shown in the figure below.

From this menu, you can also duplicate cards.
To edit cards, you can also use Alt+Click, which opens a dialog box that lets you
select multiple cards at once.
 | 227

The figure below shows card1 with its graphics form object.

File Import

A File Import object is used to display a file browser with an associated input field
for browsing to a file or entering its path and name. It is used to enable file import
by the user of an application at run time, when the file is not available in the
application beforehand.
Consider an application where a CAD file can be selected and imported at run
time, as shown in the figure below.

The corresponding File Import object is shown in the figure below.
228 |

The Settings window for the File Import object has a section File Destination. In this
section, you can select any tree node that allows a file name as input. This is shown
in the figure below, where the Filename for a geometry Import node is selected.

In this application, the File types table specifies that only CAD files are allowed.
You can further control which File types are allowed by clicking the Add and Delete
 | 229

buttons below the list of File types. Clicking the Add button displays the dialog box
shown below:

ALTERNATIVES TO USING A FILE IMPORT OBJECT

If an input field for the file path and name is not needed, then there are other
methods for file import that allow a user to pick a file in a file browser. For
example, you can use a menu, ribbon, toolbar item, or a button. In that case, you
use an Open File command in the command sequence for that button or item.
230 |

The figure below shows the Settings window of a button used to import a CAD
file.

A File Import object can also reference a File declaration. For more information, see
“File” on page 135. For more information on file handling in general, see
“Appendix C — File Handling and File Scheme Syntax” on page 263.

Information Card Stack

An Information Card Stack object is a specialized type of Card Stack object used to
display information on the relationship between the inputs given by the user to an
application and the solution. The figure below shows a portion of a running
 | 231

application in which an information card stack is used together with information
on the expected computation time.

The corresponding form objects are shown below:
232 |

The figure below shows the Settings window where a string variable
solution_state is used as the source.

There are similarities with a Card Stack object, but for the Information Cards, each
card has an icon and text. In the figure above, the string variable values
nosolution, inputchanged, and solutionexists control which information
card is shown.
 | 233

In this example, the information card stack is accompanied by a data display object
where a model tree information node for the Expected Computation Time is used
as the source. The figure below shows its Settings window.

Note that information nodes in the model tree are only shown when working with
the Application Builder. They are made available in the Source section in the
Settings window for form objects, when applicable.
You can also find information nodes with Last Computation Time under each study.
The information node Last Computation, found directly under the Model node, will
correspond to the computation time for the last computed study.
Information nodes can be used as a source for input field objects, text objects, and
data display objects. For input field objects and text objects, in order for the
information nodes to be accessible, the Editable check box has to be cleared.
234 |

The Expected Computation Time take its data from the root node of the application
tree, as shown below.

If the computation time is predominantly spent in a method, such as when the
same study is called repeatedly, then you can manually measure the computation
time by using the built-in methods timeStamp and setLastComputationTime.
For more information, see “Date and Time Methods” on page 296.

Array Input

An Array Input object has an input table used to enter array or vector-valued input
data. An array input object supports string arrays as data sources. You can add an
optional label, symbol, and unit.
 | 235

USING AN ARRAY INPUT OBJECT FOR 3D POINT COORDINATE INPUT

Consider an application where the user enters 3D coordinates for a point where
the stress is evaluated. The figure below shows a screenshot from an application
with an array input, button, text label, and data display object.
236 |

The figure below shows the Settings window of the array input object.
 | 237

The Array Input form object uses a Source named samplecoords, which is a 1D
Array of type Double. This array is created prior to the creation of the Array Input
object by declaring an Array 1D Double with the following Settings.

In the Settings window of the array input object:
• In the Length field, enter the length of the array as a positive integer. The

default is 3.
• From the Show vector as list, choose Table (the default) to show the array

components as a table, or choose Components to show each array component
as a separate input field with a label.

• In the Value table, enter the initial values for the components in the array.
• The Layout Options section provides settings for adding optional labels and

units to the array input.

In this example, when the user clicks the button labeled Evaluate stress at point,
the following method is run:

with(model.result().dataset("cpt1"));
 set("pointx", samplecoords[0]);
 set("pointy", samplecoords[1]);
 set("pointz", samplecoords[2]);
endwith();

where the values pointx, pointy, and pointz will be used subsequently as
coordinates in the evaluation of the stress.
238 |

Radio Button

A Radio Button object has a fixed number of options from which you can choose
one. It is most useful when you have just a handful of options.

USING RADIO BUTTONS TO SELECT A LOAD

Consider an application where the user can select one of three predefined loads,
as shown in the following figure.
 | 239

The corresponding Settings window is shown below, where the global parameter
F is used as the source.

In the Initial value list, choose the manner in which the initial selection of the radio
button should be made. The options are From data source, First allowed value (the
default), and Custom value. For the Custom value option, select from a list of the
allowed values given by the choice list.
In the Choice List section, you can add choice lists that contribute allowed values
to the radio button object, where each valid value represents one radio button.
240 |

The radio button names are taken from the Display name column of their
associated choice list. The figure below shows the choice list used in this example.

USING A UNIT SET INSTEAD OF A CHOICE LIST

If the radio button will be used for the purpose of changing units, then a Unit Set
can be used instead of a Choice List (You still select it in the Choice List section of
the Settings window of the radio button object).

Selection Input

In the Application Builder, you can allow the user of an application to interactively
change which entities belong to an Explicit selection with a Selection Input object
or a Graphics object. For more information on selections, see “Selections” on page
74. In the example below, the embedded model has a boundary condition defined
 | 241

with an Explicit selection. Both a Selection Input object and a Graphics object are
used to let the user select boundaries to be excited by an incoming wave.

The user can select boundaries here by clicking directly in the graphics window
corresponding to the Graphics object or by adding geometric entity numbers in a
list of boundary numbers corresponding to a Selection Input object.
To make it possible to directly select a boundary by clicking on it, you can link a
graphics object to an explicit Selection used to group boundaries, as shown in the
figure below. Select the explicit selection and click Use as Source.
242 |

In the figure below, there are two explicit selections, Excitation Boundary and Exit
Boundary, and the graphics object graphics2 is linked to the selection Excitation
Boundary.

When a graphics object is linked directly to an explicit selection in this way, the
graphics object displays the geometry and the user can interact with it by clicking
on the boundaries. The boundaries will then be added (or removed) to the
corresponding explicit selection.
 | 243

To make it possible to select by number, you can link a selection input object to
an explicit selection, as shown in the figure below.

In a selection input object, you can copy, paste, remove, clear, and zoom into
selections.

You can choose to use a graphics object as the source of a selection without
having any selection input object. You can also link both a graphics object
and a selection input object to the same explicit selection.
244 |

Text

A Text object is a text field with default text that is taken from a string variable or
an Information node. The Settings window for a text object is shown below.

Select a string variable or Information node from the tree in the Source section and
then click Use as Source. In the Value field, enter the initial text. By default, the
Initial value text is taken from this field. To instead use the string variable for the
Initial value text, change the Initial value setting to From data source.

The check box Editable is cleared by default. If selected, the text object can be
used, for example, to type comments in a running application. If the text is
changed by the user, it is stored in the string variable that is used as the data
source, regardless of the Initial value setting.
The check box Wrap text is selected by default. Clear this check box to disable
wrapping of the text. A scroll bar appears if the text does not fit.
For more information on Information nodes, see “Data Display” on page 85.
 | 245

List Box

A List Box object is similar to a radio button object, except that it allows for the
simultaneous selection of multiple options.

USING A LIST BOX TO SUPERIMPOSE VIBRATIONAL MODES

Consider an application where the first six vibrational modes of a mechanical part
can be superimposed and visualized by selecting them from a list box, as shown in
the figure below.

As an alternative, the following figure shows that a list can be displayed as a dialog
box.
246 |

The Settings window for the list box of this example is shown in the figure below.

The Select values in list allows you to choose between two alternatives, List box or
Dialog, for displaying the list.
You can use any scalar or array declaration as a source. Select from the tree and
click Use as Source. If you use a string array as the source, you can, in the running
application, select more than one item in the list using Shift+Click or Ctrl+Click.
 | 247

For other sources, you can only select one value from the list. This example uses a
1D string array svar1D. Its Settings window is shown below.

In the Choice List section, you can add choice lists that contribute allowed values
to the list box. The figure below shows the choice list used in this example.

The vibrational modes 1–6 correspond to trivial rigid body modes and are not of
interest in this application, hence the Value column starts at 7. The choice list
allows you to hide the actual mode values in the model from the user by only
displaying the strings in the Display name column. The first nonrigid body modes
are named Mode 1, Mode 2, etc.
248 |

The method below uses the COMSOL Multiphysics operator with() to visualize
the superimposed modes. This example is somewhat simplified, since it ignores the
effects of amplitude and phase for the modes.

String withstru="0";
String withstrv="0";
String withstrw="0";
for(int i=0;i<svar1D.length;i++){
 withstru=withstru + "+" + "with(" + svar1D[i] + ",u)";
 withstrv=withstrv + "+" + "with(" + svar1D[i] + ",v)";
 withstrw=withstrw + "+" + "with(" + svar1D[i] + ",w)";
}

with(model.result("pg7").feature("surf1").feature("def"));
 setIndex("expr", withstru, 0);
 setIndex("expr", withstrv, 1);
 setIndex("expr", withstrw, 2);
endwith();
useGraphics(model.result("pg7"),"/form1/graphics8");
zoomExtents("/form1/graphics8");

Assuming the user selected the modes 1, 3, and 5 by using the list box, the method
creates an expression with(1,u)+with(3,u)+with(5,u). This expression is then
used for the x-displacement (dependent variable u) in a displacement plot. In a
similar way, the method automatically creates expressions for the variables v and w
associated with the y- and z-displacement, respectively. Note that the command
with(), used in the results in the example above, is different from the built-in
with() command used to shorten syntax that is described in “With, Get, and Set
Methods” on page 300.

USING A UNIT SET INSTEAD OF A CHOICE LIST

If the list box will be used for the purpose of changing units, then a Unit Set can
be used instead of a Choice List (You still select it in the Choice List section of the
Settings window of the list box).
 | 249

Table

A Table Object represents a table with rows and columns that can be used to define
input or output. The figure below shows an example of a running application with
a table object used to accept input in three columns.

The figure below shows the corresponding form object and its Settings window.
250 |

In this example, the data source references three 1D string arrays. You can select
any type of array as the source and then click Use as Source.
Three check boxes control the overall appearance of the table:
• Show headers

• Automatically add new rows

• Sortable

The Automatically add new rows check box ensures that an additional empty row
is always available when a user is filling out a table. If all of the 1D string arrays,
which are used as a source to the table, have nonempty values for New element
value in their declaration Settings window, then this functionality is deactivated. In
this case, new rows can only be added by clicking the Add button in the associated
table toolbar, if such a button has been made available.
The Sortable check box makes it possible to sort the table with respect to a
particular column by clicking the corresponding column header.
The Sources section contains a table with five columns:
• Header

• Width

• Grow

• Editable

• Alignment

• Data source

Each row in this table defines a column in the table object. The option Grow allows
individual columns to grow when a form is resized. This option is only applicable
to grid mode and if the Horizontal alignment of the table is set to Fill.
 | 251

In the example, the string arrays define the initial values for the rows
corresponding to the three columns, as shown in the figure below:

TOOLBAR

In this section, you can select which toolbar buttons should be used to control the
contents of the table. The Position list defines the location of the toolbar relative
to the table and provides the following options:
• Below

• Above

• Left

• Right

To add a button to the toolbar, click the Add Toolbar Button below the table.
252 |

The following dialog box is then shown.

You can add the following buttons:
• Move Up

• Move Down

• Add

• Delete

• Clear Table

• Clear Table and Load from File

• Load from File

• Save to File

In addition, you can add customized buttons by clicking Custom Button in the
Toolbar Buttons dialog box. The figure below shows the Edit Custom Toolbar
 | 253

Button dialog box used to define a customized button. In this case, the button
Process 1 is used to set default values for a certain process.

The Choose commands to run section is similar to that of menu, ribbon, and toolbar
items, as well as buttons.
The Load from File and Save to File buttons are used to load and save from/to the
following file formats:
• Text File (.txt)
• Microsoft® Excel® Workbook (.xlsx)

- Requires LiveLink™ for Excel®

• CSV File (.csv)
• Data File (.dat)
254 |

This is shown in the figure below.

The allowed separators are comma, semicolon and tab for CSV files, and space and
tab for DAT and TXT files.

Slider

A Slider is a form object for choosing numerical input using a slider control.

USING A SLIDER TO CHANGE THE MAGNITUDE OF A STRUCTURAL LOAD

Consider an application where the magnitude of a load can be changed by a slider
control, such as in the figure below.

In this example, the slider is accompanied by an input field that is used to display
the selected value.
 | 255

The Settings window of the slider is shown in the figure below.

In this example, the slider uses a global parameter F as its source. You can select
any parameter, variable, or declared scalar variable as a source. Select from the tree
and click Use as Source.
From the Value type list, choose Integer or Real (default), depending on the type
of data in the data source for the slider.
You determine the range of values for the data source by defining the Maximum
value, Minimum value, and Number of steps for the slider. You can also set a Tooltip
that is shown when hovering over the slider. The Append unit to number option
lets you associate a unit with the slider. This unit is appended to the number using
the standard bracket notation, such as [N], before being passed as a value to the
source variable. In the example above, the input field and the slider both have the
setting Append unit to number activated. As an alternative to Append unit to
256 |

number, you can choose Append unit from unit set. See “Unit Set” on page 136
for more information.
In the Initial value list, select From data source or Custom value for the initial value
for the slider.

Hyperl ink

A Hyperlink object embeds a hyperlink in a form. The figure below shows an
example of a hyperlink.

The figure below show the corresponding Settings window.

The Hyperlink object supports the types of URLs that you can use in a web
browser, including:
• Web Page: When a user clicks the hyperlink for a web page, it opens in the

user’s default browser. The URL string needs to be on the form
 | 257

protocol://address, where protocol is the transmission protocol; for
example, HTTP or HTTPS. The web address can be partial or complete, but
it is recommended to use a complete web address.

• Email: An email address is specified on the form mailto:emailaddress. This
will launch the user's default email application program and prepare a new
message where the To field is set to the address specified. This way of
interactively sending an email from a COMSOL application is different from
using the built-in method. For more information on the built-in methods
for email, see “Email Methods” on page 288.

Toolbar

A Toolbar object contains the specifications of a toolbar with toolbar buttons. The
figure below shows a toolbar with buttons for Save as, Compute, and Plot.

The Settings window for this toolbar is shown in the figure below.

Each row in the Toolbar Items table contains either an item corresponding to a
toolbar button or a separator. Use the buttons below the table to add items or
separators, change row order, or delete a row. Click the Edit button to display the
258 |

Settings window associated with each row. The figure below shows the Settings
window of item1, the Save As item.

The text in the Text field will be shown as a tooltip when hovering over the toolbar
button. The Icon list, the Keyboard shortcut field, and the Choose commands to run
tree represent the same functionality as a button object. For more information, see
“Button” on page 51.

Spacer

A Spacer object is invisible in the user interface and is only used when working in
grid layout mode. It defines a space of fixed size that you can use to ensure that
neighboring form objects have enough space to show their contents. Typically,
you would use a spacer next to a table or graphics object to ensure that they are
rendered properly. If the user resizes the window so that it becomes smaller than
 | 259

the size of the spacer, the effective size of the window is maintained by displaying
scroll bars. The figure below shows the Settings window of a spacer object.
260 |

Appendix B — Copying Between Applications

Many nodes in the application tree can be copied and pasted between applications,
including: forms, form objects, menu items, methods, Java® utility methods,
external libraries, file declarations, choice list declarations, menus, menu items,
ribbon sections, ribbon tabs, and ribbon items.
When you copy and paste forms, form objects, and items between applications, the
copied objects may contain references to other objects and items. Such references
may or may not be meaningful in the application to which it is copied. The
following set of rules apply when objects are pasted from the clipboard:
• A declaration referenced in a form object or menu item is included when

copying the object, but is not necessarily pasted. It is only pasted if there is
no compatible declaration present. If a compatible declaration exists, that is
used instead. A compatible declaration is defined as one having the same
name and type. For example, a string declaration is not compatible with an
integer declaration. An existing declaration may have an invalid default, but
no such check is done when pasting.

• A referenced global parameter may have a different unit, but will still be
considered compatible.

• A form or form object directly referenced from another form object is not
included automatically when copying objects. The direct reference will point
to an existing object if it has the same name. If the original reference is
among the copied objects, then that object will be used in the reference
instead of any existing objects having the same name. The name of the
copied reference will be changed to avoid name collisions.

• No objects in the model tree will be automatically copied, for example, a
graphics object referring to a geometry or an input field referring to a
low-level setting exposed by Model Data Access. If the reference points to
an object that exists in the model tree of the target application, then that
reference will be used.

• References to nonexisting objects will be attempted to be removed when
pasted. An exception is command sequences in buttons, where all commands
are kept and marked as invalid if they point to a nonexisting reference.

• Local methods are included in the copy-paste operation. However, no
attempt is made to update the code of the method. This also applies when
copying a global method.

• Arguments to commands in the command sequence of a button or a menu
item will be left as is.
 | 261

• All image references are automatically copied and added to the image library
when applicable. If there is an existing image with the same name, it will be
used instead of the copied version.

• No files, sounds, or methods are automatically copied if referenced to.
However, methods can be copied and pasted manually.

• All pasted objects that have a name that conflicts with that of an existing
object will be renamed. Any references to the renamed object from other
pasted objects will be updated.
262 |

Appendix C — File Handling and File Scheme Syntax

The handling of files may be an important feature of an application. For example,
the application may require a spreadsheet file with experimental data as input, a
CAD file to be imported, or a report to be generated and exported. The
Application Builder provides tools for reading and writing entire files or portions
of a file. The way that this is done will vary depending on the system where the
application is running. The file system may be different on the computer running
COMSOL Multiphysics, where the application is developed, and on the computer
where COMSOL Server is installed and the application will run once it is
deployed.

File Handling with COMSOL Server

In general, you cannot read and write files to local directories when running
applications with a web browser or the COMSOL Client for Windows®. The
application and its methods are run on the server and have no knowledge of the
client file system (where the web browser or COMSOL Client is run).
However, there are techniques for transferring files to and from the client file
system when running an application both with a web browser and the COMSOL
Client.
A File Import object can be used to ask the user for a file. The user then browses
to a file on the client file system, which is then uploaded to the COMSOL Server
file system and becomes available to the application and its methods. This can be
used, for example, to provide a CAD file or an experimental data file from the user
at run time. This is covered in the section “File Import” on page 268.
In a command sequence of, for example, a button, you can export data generated
by the embedded model by running a subnode of the Export or Report nodes. This
is covered in the section “File Export” on page 276.
 | 263

SAVING AND OPENING FILES USING FILE COMMANDS

In the editor tree used in a command sequence, the File Commands folder contains
commands to save and load applications and files, as well as exiting an application.

The command Open File will pick any file from the server produced by a method,
the model, or embedded with the application, and open it using the associated
application on the client. This can be used, for example, to open a PDF file in the
client file system, or show a text file or an image exported from the model on the
client side. In the figure above, an Open File command is used to open the PDF
documentation for an application. The corresponding PDF file is embedded in the
application by being stored in the Libraries > Files node. Files located there are
referenced using the embedded:/// file scheme syntax described in the next
section, “File Scheme Syntax” on page 266.
264 |

To open files from a method, use the built-in method fileOpen; see also
“Operating System Methods” on page 288.
To save a file, use the command Save File As, which is similar to Open File. It will
take any file from the server file system and display a Save As dialog box to the user
where the user can browse to a client location to save the file. This is similar to
downloading files from a link within a web browser. In the figure below, a Save
File As command is used to save a CAD model that is stored in the Libraries > Files
node.

To save files from a method, use the built-in method fileSaveAs; See also “GUI
Command Methods” on page 294. For more information on saving and exporting
files, see “File Export” on page 276.
The Save Application and Save Application As commands are available for use in the
command sequence for certain form objects. The Save Application As command
will display a Save As dialog box where the user can specify a client path where the
entire application will be saved.
Similarly, the Save Application on Server and Save Application on Server As
commands are available to save the entire application on the server file system. For
information on the corresponding built-in methods, see “GUI Command
Methods” on page 294.
In summary, both uploading and downloading files from the client file system is
supported, but the application can never do it silently in the background without
the user browsing to the source or destination location of the file.

MODEL COMMANDS

In the editor tree used in a command sequence, the Model Commands folder
contains two commands: Clear all solutions and Clear all meshes. Use these
 | 265

commands to make the MPH file size smaller before saving an application by
erasing solution and mesh data, respectively.

File Scheme Syntax

To make applications portable, the Application Builder allows you to use virtual
file locations using file schemes. A file scheme can be seen as a pointer to a file on
the file system, but the application does not need to know where the file is actually
stored.
Different file schemes exist for different purposes:
• The user file scheme is for files that should be persistent between different

runs of an application by the same user.
• The common file scheme behaves in the same way, but is for files that should

be shared between all users.
• The temp file scheme is for files that should be removed as soon as the

application is closed.
266 |

• The embedded file scheme is used to store files in the application itself. This
can be useful if you want to make the application self-contained and send it
to someone else.

• The upload file scheme is for files that are uploaded to the application by the
user at runtime, such as a CAD-file to which the user browses.

The table below summarizes all available file schemes.

For more information on files in the Libraries node accessible by the
embedded:/// syntax, see “Libraries” on page 175.
The table below summarizes the usage of the different file schemes. In the table,
a check mark means that this scheme is available and (r) means that it is the
recommended scheme.

SCHEME REFERS TO DEFAULT PATH TYPICAL USAGE

embedded:/// Files embedded in
the application using
Libraries > Files

N/A Experimental data,
CAD files, mesh files,
interpolation data

upload:/// Files to be uploaded
by the user at run
time

Determined by the
Target directory in
the Settings window
of the File declaration

Experimental data,
CAD files, mesh files,
interpolation data

temp:/// Files in a random
temporary directory,
which is unique for
each started
application instance.
These files are
deleted when the
application is closed.

A random
subdirectory to the
folder for temporary
files, as determined
by the settings in
Preferences > Files

Temporary files
produced by
command sequences
or methods, or
output to be saved
on the client (for use
with COMSOL
Server)

user:/// Files in a directory
shared by all
applications for the
current user

Determined by the
settings in
Preferences > Files

Output from
methods to be saved
between sessions

common:/// Files in a directory
shared by all users

Determined by the
settings in
Preferences > Files

Files shared between
many users or
applications

USAGE EMBEDDED UPLOAD TEMP USER COMMON

File is used as input √ (r) √ √
File is output √ (r) √
Method reading a file √ (r) √ √ √ √
 | 267

You can set the preferences for the paths to temporary, user, and common files in
the Files page of the Preferences dialog box, which is accessible from the File menu,
as shown in the figure below.

File Import

CAD IMPORT USING THE MODEL TREE AND A FILE IMPORT OBJECT

A File Import object is used to display a file browser with an associated input field
for browsing to a file or entering its path and name. It is used to enable file import
by the user of an application at run time, when the file is not available in the
application beforehand. You can directly link a File Import object to a file Import
node in the model tree; for example, a CAD Import node. Consider an application
where a CAD file can be selected and imported at run time, as shown by the figure
below.

The corresponding File Import object is shown in the figure below.

Method writing a file √ (r) √
File is client-side √ √ √ (r) √ √

USAGE EMBEDDED UPLOAD TEMP USER COMMON
268 |

The Settings window for the File Import object has a section File Destination. In this
section, you can select any tree node that allows a file name to be input. This is
shown in the figure below, where the Filename for the Import node is selected.

If you do not wish to use a File Import object, you can directly reference a Filename
from a button or an item in a menu, ribbon, or toolbar.
 | 269

The figure below shows a ribbon item used for geometry import together with its
Settings window.
270 |

In the Settings window above, the command Import file to Import 1 will open a file
browser for the user to select a file, as shown in the figure below.

The subsequent commands build and plot the geometry, zoom out using zoom
extents, and finally set the value of a string variable (in this case used to control a
card stack).
For more information on the File Import object, see “File Import” on page 228.

FILE IMPORT IN METHODS

Continuing the example of the previous section, assume that we click Convert to
New Method in the Settings window. The corresponding lines of code show how
CAD import can be accomplished from a method:

importFile(model.geom("geom1").feature("imp1"), "filename");
model.geom("geom1").run();
useGraphics(model.geom("geom1"), "form1/cardstack1/card3/graphics1");
zoomExtents("form1/cardstack1/card3/graphics1");
mode = "Visualization";

The first line illustrates using the built-in method importFile. For more
information on the method importFile and other methods for file handling, see
“File Methods” on page 286.

FILE ACCESS AND FILE DECLARATIONS

At the bottom of the Settings window of a File Import object, you can see which
file scheme syntax to use to access an imported file from a method (next to Access
 | 271

using:). The figure below shows an example where a File Destination and Filename
are used.

The file scheme syntax, upload:///geom1/imp1/filename, needs to be used
whenever accessing this file.
As an alternative, you can use a File declaration under the Declarations node.
(However, File declarations are primarily used for file import from method code.)
In this case, the file chosen by the user can be referenced in a form object or
method using the syntax upload:///file1, upload:///file2, etc. The file name
handle (file1, file2, etc.) can then be used to reference an actual file name
picked by the user at run time. See also “File” on page 135.
This syntax can also be used in any file browser text fields within the Model
Builder nodes. The figure below shows a file reference used in the Filename field
of the Import model tree node for a model using geometry import.

However, a quicker way is to link a file import object directly to the Filename field,
as described previously in the section “CAD Import using the Model Tree and a
File Import Object” on page 268.
272 |

IMPORTING EXPERIMENTAL DATA

Consider an application where the user is providing a file with experimental data
at run time. The figure below shows the file import object of such an application
as it appears in grid layout mode.

The figure below shows the Settings window of the corresponding file import
object and its link to a file declaration.
 | 273

In this application, the File types table specifies that only CSV files are allowed. The
Settings window for the File declaration is shown in the figure below.

The file declaration serves as the “destination” of the imported data, which is
written to the file upload:///experimental.csv.
Note that the file extension .csv used in the declaration is optional and that the
file picked by the user at run time can have any name. For example, the file name
picked at run time can be my_data.csv, but when referenced in method code, the
abstract file handle name experimental.csv is always used.
In order to make it possible to run the application without having to first provide
experimental data, a file containing default experimental data is embedded in the
application. This default data file is used by the application by accessing it with the
embedded:/// file scheme syntax, as shown in the figure below.
274 |

In this example, which uses the Optimization Module, the application performs a
least-squares fit to the experimental data.

The following method handles the logic to determine if user-provided
experimental data files exist or if the default data set should be used.

if (exists("upload:///experimental.csv")) {
 with(model.physics("opt").feature("glsobj1"));
 set("fileName", "upload:///experimental.csv");
 endwith();
}
else{
 String s_data = confirm("No experimental data file was uploaded. Do you
want to use the embedded data?", "Experimental Data", "Yes", "Cancel
Parameter Estimation");
 if(s_data.equals("Cancel Parameter Estimation")){
 return;
 }
}

If a user-provided file exists, the code replaces
embedded:///experimental_default.csv with upload:///experimental.csv
in the physics interface glsobj1.
 | 275

File Export

FILE EXPORT USING THE MODEL TREE

In a command sequence of, for example, a button, you can export data generated
by the embedded model by running a subnode of the Export or Report nodes.
In the model tree, the Export node may contain the following types of subnodes
for file export:
• Data

• Plot

• Mesh

• Table

• 3D Image

• 2D Image

• 1D Image

• Animation

The Settings window for each of these nodes contains an Output section with a
field for Filename. The figure below shows the Settings window for an Export > Plot
node.

You can leave the Filename field blank, as shown in the figure above. In the
command sequence of, for example, a button, you can run the corresponding
276 |

Export > Plot node and, at run time, it will open a file browser window for the user
to select a location and file name, as seen in the figure below.

While developing an application, you may need to use the Model Builder
repeatedly to check the exported data. In this case, you can use the Filename field
for a test file and, by selecting the Always ask for filename check box, a file browser
will still be opened at run time.
In a similar way to the Export subnodes, each Report subnode has a Format section
with a Filename field, as seen in the figure below.

By running a Report subnode, a file browser window is opened for the user to
select a location and file name for the report.
For more detailed control over file import and export, you can instead use a file
scheme.

FILE EXPORT TO A TEMPORARY FILE

Some applications may need to produce temporary files, and this is accomplished
by using the temp:/// file scheme. The temporary files are stored in a random
temporary directory, which is unique for each started application instance. These
files are deleted when the application is closed. Temporary files can be produced
by command sequences or methods, or output to be saved on the client when used
with COMSOL Server.
 | 277

The example below shows the Settings window of an Export > Plot node that is
used to export plot data as numerical values.

The Filename in its Output section is set to temp:///lineplot.txt.
To save the plot to disc in this example, a button is created. In the Settings window
for the button, in the section Choose Commands to Run, first create the output
graph file by choosing the Export > Plot node created above and clicking Run.
Second, choose GUI Commands > File Commands > Save File As and click Run again.
278 |

In the Output section of the button Settings, set the filename to the name of the
temporary file created by the Export Plot command, in this case,
temp:///lineplot.txt.
 | 279

The Save File As command provides a dedicated Edit Argument dialog box
with easy access to all embedded files as well as shortcuts for all file
schemes.

CREATING REPORTS USING LOW-LEVEL FUNCTIONALITY

This section describes creating reports using low-level functionality. For a more
direct method, see “File Export” on page 276.
The example below shows an application where a report in the Microsoft® Word®
format (.docx) can be saved by the user. The figure below shows a tab in the
ribbon of the application. In this tab, there is a Report button in the Documentation
section.
280 |

The associated application tree node is shown in the figure below.

The following figure shows how the syntax user://file was used in the Filename
field in the Settings window of the Report node of the Model Builder.

In this application, the check box Open finished report is selected, which means
that the Word® document will open after the report has been created. The user of
the application can then save the report from the Word® file menu.
 | 281

In this example, the file scheme common:/// could have been used in the same
way. The user and common file schemes are primarily useful when the same files
are used repeatedly by an application.
The figure below shows the Settings window of the Report ribbon item.

The method b_report contains the following code:
if(length(information_card)>0) {
 alert("New input data. Compute to update results first.");
}
else {
 model.result().report("rpt1").run();
}

The file scheme syntax can also be used directly in methods. The code below is
from a method used to export an HTML report.

String answerh = request("Enter file name","File Name", "Untitled.html");
if(answerh != null){
 model.result().report("rpt1").set("format","html");
 model.result().report("rpt1").set("filename","user:///"+answerh);
 model.result().report("rpt1").run(); }}
282 |

Appendix D — Keyboard Shortcuts

The table below lists the keyboard shortcuts available in the Application Builder.

SHORTCUT ACTION APPLICATION
BUILDER

FORM
EDITOR

METHOD
EDITOR

Ctrl+A Select all √ √ √
Ctrl+D Deselect all √
Ctrl+C Copy √ √ √
Ctrl+V Paste √ √
Del Delete √ √ √
Ctrl+N Create a new application √ √ √
Ctrl+S Save an application √ √ √
Ctrl+F8 Test an application √ √ √
Alt+Click Edit certain form objects √
Ctrl+Pause Stop a method √
Ctrl+Shift+F8 Apply changes √ √ √
Ctrl+R Record code √
F11 Go to node √
F12 Extract variable √
F1 Display help √ √ √
F2 Rename applicable nodes √
F3 Disable applicable nodes √
F4 Enable applicable nodes √
Ctrl+Up arrow Move applicable nodes up √
Ctrl+Down arrow Move applicable nodes down √
Ctrl+Z Undo √ √ √
Ctrl+Y Redo (Control+Shift+Z on Mac) √ √ √
F5 Continue (in debugger) √
F6 Step (in debugger) √
F7 Step into (in debugger) √
F8 Check syntax √
 | 283

Ctrl+F Find and replace text in methods √
Ctrl+Space Autocomplete method code √
Ctrl+U Make selected code lowercase √
Ctrl+Shift+U Make selected code uppercase √
Ctrl+B Toggle breakpoint on selected line √
Ctrl+M Toggle between matching

parentheses, square brackets, or
curly braces

√

Ctrl+Shift+M Select all characters between
matching parentheses, square
brackets, or curly braces

√

Ctrl+Scroll wheel
up

Zoom in, in method code window √

Ctrl+Scroll wheel
down

Zoom out, in method code window √

Ctrl+All arrow keys Fine-tune position of selected form
objects

√

All arrow keys Fine-tune position of selected form
objects

√

Ctrl+Alt+A Go to Application Builder window √ √
Ctrl+Alt+M Go to Model Builder √ √
Ctrl+Alt+Left-Click Create a local method √
Alt+F4 Close window √ √ √
Ctrl+F4 Close document √ √
Ctrl+Shift+F4 Close all documents √ √

SHORTCUT ACTION APPLICATION
BUILDER

FORM
EDITOR

METHOD
EDITOR
284 |

Appendix E — Built-in Method Library

This appendix lists all of the built-in methods available in the Method editor,
except for methods that operate on the model object and the application object.
For detailed information on using the built-in methods and for full information
on the syntax used, see the Application Programming Guide and the
Programming Reference Manual.
As an alternative method of learning the syntax of these methods, you can use
code completion by typing the name of the method and then use Ctrl+Space. A
window will open with information on the syntax and method signature.

Model Utility Methods
The model utility methods make it possible to load the model object part of an
MPH file into a method for further processing.

NAME DESCRIPTION

createModel Creates a new model with a given tag.

removeModel Removes a model. The embedded model cannot be removed.

modelTags Returns an array of model tags for all loaded models, including the
embedded model.

uniqueModeltag Returns a model tag that is not in use.

getModel Returns a model with a specified tag.

loadModel Loads a model with a specified tag from a file.

loadProtectedModel Loads a password protected model with a specified tag from a file.

loadRecoveryModel Loads a model from a recovery directory/folder structure.

saveModel Saves a model to a file. The filename can be a file scheme path or,
if allowed by security settings, a server file path.
 | 285

File Methods

NAME DESCRIPTION

readFile Returns the contents in a given file as a string.

openFileStreamReader Returns a CsReader object that can be used to read
line-by-line or character-by-character from a given file
name.

openBinaryFileStreamReader Returns a CsBinaryReader object that can be used to
read from a given file byte-by-byte.

readMatrixFromFile Reads the contents of the given file into a double matrix.
The file has the same spreadsheet-type format as available
in the model tree Export node.

readStringMatrixFromFile Reads the contents of the given file into a string matrix.
The file has the same spreadsheet-type format as available
in the model tree Export node.

readCSVFile Reads a file with comma-separated values (CSV file) into
a string matrix. It expects the file to use the RFC 4180
format for CSV.

writeFile Writes array data to a given file. If the spreadsheet
format is used, then the data can be read by
readMatrixFromFile or
readStringMatrixFromFile.

openFileStreamWriter Returns a CsWriter object that can write to a given file.

openBinaryFileStreamWriter Returns a CsBinaryWriter object that can be used to
write to a given file byte-by-byte.

writeCSVFile Writes a given double or string array to a CSV file. The
RFC 4180 format is used for the CSV.

exists Tests whether a file with a given name exists.

deleteFile Deletes a file with a given name if it exists. The file is
deleted on the server.

copyFile Copies a file on the server. Both the source and target
names can use file scheme paths.

importFile Displays a file browser dialog box and uploads the
selected file to the file declaration with the given name.
Alternatively, it uploads the selected file to the Filename
text field in a given model object entity.

writeExcelFile Writes the given string array data starting from a
specified cell in a specified sheet of an Excel file.

readExcelFile Reads a specified sheet of an Excel file, starting from a
specified cell, into a 2D string array.
286 |

getFilePath Returns the absolute server file path of the server proxy
file corresponding to a certain file scheme path, or null if
the server proxy file for the given path does not exist.

This method can be used to pass the path to, for
example, a file using the temp:/// scheme to external
code or an application.

getClientFileName Returns the original name of an uploaded file on the client
file system (or null if there is no uploaded file matching
the given file scheme path).

This method is only useful for providing user interface
feedback; for example, to get information on which
uploaded file is being used. There is no guarantee that the
original file would still exist on the client or even that the
current client would be the same as the original client.

getClientFilePath Returns the original path of an uploaded file on the client
file system (or null if there is no uploaded file matching
the given file scheme path).

This method is only useful for providing user interface
feedback; for example, to get information on which
uploaded file is being used. There is no guarantee that the
original file would still exist on the client or even that the
current client would be the same as the original client.

NAME DESCRIPTION
 | 287

Operating System Methods

Email Methods

Email Class Methods
The class EmailMessage can be used to create custom email messages.

NAME DESCRIPTION

executeOSCommand Executes the OS command with a given command (full path) and
parameters. When applicable, the command is run server side.

fileOpen Opens a file with the associated program on the client. See also
the section “File Methods”.

getUser Returns the username of the user that is running the application. If
the application is not run from COMSOL Server, then the value
of the preference setting General>Username>Name is returned.

openURL Opens a URL in the default browser on the client.

playSound Plays a sounds on the client.

NAME DESCRIPTION

emailFromAddress Returns the email from address from the COMSOL Server or
preferences setting.

sendEmail Sends an email to the specified recipient(s) with the specified
subject, body text, and zero or more attachments created from
Report, Export, and Table nodes in the embedded model.

userEmailAddress Returns the user email address(es) corresponding to the currently
logged in user, or an empty string if the user has not configured an
email address.

NAME DESCRIPTION

EmailMessage Creates a new EmailMessage object.

EmailMessage.setServer Sets the email (SMTP) server host and port to
use for this email message.

EmailMessage.setUser Sets the username and password to use for email
(SMTP) server authentication. This method must
be called after the setServer method.

EmailMessage.setSecurity Sets the connection security type for email
(SMTP) server communication.

EmailMessage.setFrom Sets the from address.
288 |

EmailMessage.setTo Sets the to addresses.

EmailMessage.setCc Sets the cc addresses.

EmailMessage.setBcc Sets the bcc addresses.

EmailMessage.setSubject Sets the email subject line. Note that newline
characters are not allowed.

EmailMessage.setBodyText Sets the email body as plain text. An email can
contain both a text and an HTML body.

EmailMessage.setBodyHtml Sets the email body as HTML text. An email can
contain both a text and an HTML body.

EmailMessage.attachFile Adds an attachment from a file. The attachment
MIME type is determined by the file name
extension.

EmailMessage.attachFile Adds an attachment from a file with a specified
MIME type.

EmailMessage.attachFromModel Adds an attachment created from a report,
export, or table feature in the model.

EmailMessage.attachText Adds a text attachment with a specified
sub-MIME type, such as plain or HTML.

EmailMessage.attachBinary Adds an attachment from a byte array with a
specified MIME type.

EmailMessage.send Sends the email to the email (SMTP) server. An
email object can only be sent once.

NAME DESCRIPTION
 | 289

EMAIL PREFERENCES

To set preferences for an outgoing email (SMTP) server, open the Email page of
the Preferences dialog box, as shown in the figure below.

COMSOL Server provides a similar set of email preferences.
290 |

GUI-Related Methods

NAME DESCRIPTION

Call a method directly Call a method from the Methods list by using its name; for
example, method1(), method2().

callMethod Alternate way to call a method from the Methods list;
used internally and in cases of name collisions.

useGraphics Plots a given entity (Plot Group, Geometry, Mesh, or
Explicit Selection) in the graphics form object given by a
name or name path in the second argument.

useForm Shows the form with a given name in the current main
window. Equivalent to the use method of a Form object;
see below.

closeDialog Closes the form, shown as a dialog box, with a given
name.

dialog Shows the form with a given name as a dialog box.
Equivalent to the dialog method of a Form object; see
below.

alert Stops execution and displays an alert message with a
given text.

alert Stops execution and displays an alert message with a
given text and title.

confirm Stops execution and displays a confirmation dialog box
with a given text and title. It also displays two or three
buttons, such as “Yes”, “No”, and “Cancel”.

error Stops execution and opens an error dialog box with a
given message.

request Stops execution and displays a dialog box with a text field,
requesting input from the user.

message Sends a message to the message log if available in the
application.

evaluateToResultsTable Evaluates a given entity, a Derived Value, in the table
object given by the name or name path in the second
argument, which will then be the default target for the
evaluations of the Derived Value. If the third argument is
true, the table is cleared before adding the new data.
Otherwise, the data is appended.
 | 291

evaluateToDoubleArray2D Evaluates the given entity, a Derived Value, and returns
the nonparameter column part of the real table that is
produced as a double matrix. All settings in the numerical
feature are respected but those in the current table
connected to the numerical feature are ignored.

evaluateToIntegerArray2D Evaluates the given entity, a Derived Value, and returns
the nonparameter column part of the real table that is
produced as an integer matrix. All settings in the
numerical feature are respected, but those in the current
table connected to the numerical feature are ignored.

evaluateToStringArray2D Evaluates the given entity, a Derived Value, and returns
the nonparameter column part of the potentially complex
valued table that is produced as a string matrix. All
settings in the numerical feature are respected, but those
in the current table connected to the numerical feature
are ignored.

useResultsTable Shows the values from the tableFeature in the
resultsTable form object.

getChoiceList Returns an object of the type ChoiceList, representing
a choice list node under the declarations branch. The type
ChoiceList has associated methods that make it easy
to change values and display names, see the Application
Programming Guide..

setFormObjectEnabled Sets the enable state for the form object specified by the
name or name path.

setFormObjectVisible Sets the visible state for the form object specified by the
name or name path.

setFormObjectText Sets the text for the form object specified by the name or
name path in the second argument. This method throws
an error if it is impossible to set a text for the specified
form object.

setFormObjectEditable Sets the editable state for the form object specified by the
name or name path. This functionality is only available for
text field objects.

setMenuBarItemEnabled Sets the enable state for the menu bar item specified by
the name or name path (from the menu bar) in the first
argument.

setMainToolbarItemEnabled Sets the enable state for the main toolbar item specified
by the name or name path (from the main toolbar) in the
first argument.

NAME DESCRIPTION
292 |

setFileMenuItemEnabled Sets the enable state for the file menu item specified by
the name or name path (from the file menu) in the first
argument.

setRibbonItemEnabled Sets the enable state for the ribbon item specified by the
name or name path (from the main window) in the first
argument.

setToolbarItemEnabled Sets the enable state for the toolbar form object item
specified by the name or name path in the first argument.

useView Applies a view to the graphics contents given by the name
or name path in the second argument.

resetView Resets the view to its initial state in the graphics contents
given by the name or name path in the second argument.

getView Returns the view currently used by the graphics contents
given by the name or name path in the second argument.

setWebPageSource Sets the source for the form object specified by the name
or name path in the first argument.

getScreenHeight Returns the height in pixels of the primary screen on the
client system, or of the browser window if Web Client is
used.

getScreenWidth Returns the width in pixels of the primary screen on the
client system, or of the browser window if Web Client is
used.

NAME DESCRIPTION
 | 293

GUI Command Methods

Debug Method

Methods for External C Libraries

EXTERNAL METHOD

METHODS RETURNED BY THE EXTERNAL METHOD

The external method returns an object of type External with the following

NAME DESCRIPTION

clearAllMeshes Clears all meshes.

clearAllSolutions Clears all solutions.

exit Exits the application.

fileOpen Opens a file with the associated program on the client.

fileSaveAs Downloads a file to the client. See also the section “File Methods”.

printGraphics Prints the given graphics object.

saveApplication Saves the application.

saveApplicationAs Saves the application under a different name. (Or as an MPH file.)

scenelight Toggles scene light in the given graphics object.

transparency Toggles transparency in the given graphics object.

zoomExtents Makes the entire model visible in the given graphics object.

NAME DESCRIPTION

debugLog Prints the value of an input argument to the Debug Log window.
The input argument can be a scalar, 1D array, or 2D array of the
types string, double, integer, or Boolean.

NAME DESCRIPTION

external Returns an interface to an external C (native) library given by the
name of the library feature. The External class uses the Java
Native Interface (JNI) framework. For more information, see the
Application Programming Guide.
294 |

methods:

NAME DESCRIPTION

invoke Invokes a named native method in the library with the supplied
arguments.

invokeWideString Invokes the named native method in the library with the supplied
arguments.

close Releases the library and frees resources. If you do not call this
method, it is automatically invoked when the external library is no
longer needed.
 | 295

Progress Methods

Date and Time Methods

NAME DESCRIPTION

setProgressInterval Sets a progress interval to use for the top-level progress and
display message at that level.

Calling this method implicitly resets any manual progress
previously set by calls to setProgress().

setProgress Sets a value for the user-controlled progress level.

resetProgress Removes all progress levels and resets progress to 0 and the
message to an empty string.

showIndeterminatePr
ogress

Shows a progress dialog box with an indeterminate progress bar,
given message, and an optional cancel button.

showProgress Shows a progress dialog box with an optional cancel button,
optional model progress, and one or two levels of progress
information.

closeProgress Closes the currently shown progress dialog box.

startProgress Resets the value of a given progress bar form object name to 0.

setProgressBar Sets the value of a given progress bar form object name in the
range 0 –100 and the associated progress message.

NAME DESCRIPTION

currentDate Returns the current date as a string (formatted according to the
server's defaults) for the current date.

currentTime Returns the current time as a string (not including date and formatted
according to the server's defaults).

formattedTime Returns a formatted time using the given format. The format can
either be a time unit or text describing a longer format.

sleep Sleep for a specified number of milliseconds.

timeStamp Current time in milliseconds since midnight, January 1, 1970 UTC.

getExpectedComp
utationTime

Returns a string describing the approximate computation time of the
application. The string can be altered by the method
setExpectedComputationTime.
296 |

setLastComputat
ionTime

Set the last computation time, overwriting the automatically
generated time.

You can use the timeStamp method to record time differences and
then set the measured time in ms (a long integer).

getLastComputat
ionTime

Returns the last computation time in the given format. The format can
either be a time unit or text describing a longer format. This format is
localized and the output is translated to the current language setting.

NAME DESCRIPTION
 | 297

License Methods

Conversion Methods

Array Methods

NAME DESCRIPTION

getLicenseNumber Returns a string with the license number for the current
session. Example: licensenumber=getLicenseNumber()

NAME DESCRIPTION

toBoolean Converts strings and string arrays to Booleans. (‘true’ returns true, all
other strings return false).

toDouble Converts strings and string arrays to doubles.

toInt Converts strings and string arrays to integers.

toString Converts Booleans, integers, and doubles, including arrays, to strings.

NAME DESCRIPTION

getColumn Returns a string, double, integer, or Boolean array for a specified column
in a 2D array (matrix). This is, for example, useful when values have been
read from a file and only certain columns should be shown in a table.

getSubMatrix Returns a rectangular submatrix of an input matrix. Available for string,
double, integer, or Boolean 2D arrays.

insert Inserts one or more elements in an array and returns the expanded array.
Available for string, double, integer, or Boolean arrays.

append Adds one or more elements to the end of an array and returns the
expanded array. Available for string, double, integer, or Boolean arrays.

remove Removes one or more elements from an array and returns the shortened
array. Available for string, double, integer, or Boolean arrays.

insertRow Inserts one or more rows into a rectangular 2D array and returns the
expanded array. Available for string, double, integer, or Boolean arrays.

appendRow Adds one or more rows to the end of a rectangular 2D array and returns
the expanded array. Available for string, double, integer, or Boolean arrays.

removeRow Removes one or more rows from a 2D array and returns the reduced
array. Available for string, double, integer, or Boolean arrays.

insertColumn Adds one or more columns into a rectangular 2D array and returns the
expanded array. Available for string, double, integer, or Boolean arrays.
298 |

appendColumn Adds one or more columns at the end of a rectangular 2D array and
returns the expanded array. Available for string, double, integer, or
Boolean arrays.

removeColumn Removes one or more columns from a rectangular 2D array and returns
the smaller array. Available for string, double, integer, or Boolean arrays.

matrixSize Returns the number of rows and columns of a matrix as an integer array
of length 2. Available for string, double, integer, or Boolean arrays.

NAME DESCRIPTION
 | 299

String Methods

Collection Methods

With, Get, and Set Methods

NAME DESCRIPTION

concat Concatenates a given array or matrix of strings into a single string using
the given separators.

contains Returns true if a given string array contains a given string.

find Returns an array with the indices to all occurrences of a string in a string
array.

findIn Returns the index to the first occurrence of a string in a string array or the
first occurrence of a substring in a string.

length Returns the length of a string.

replace Returns a string where a string has been replaced with another string.

split Returns an array of strings by splitting the given string at a given separator.

substring Returns a substring with the given length starting at the given position.

unique Returns an array of strings with the unique values in the given array of
strings.

NAME DESCRIPTION

copy Returns a copy of the given array or matrix. Available for string, double,
integer, or Boolean arrays.

equals Returns true if all elements in the given array are equal and they have the
same number of elements. Available for string, double, integer, or Boolean
arrays. For doubles, comparisons are made using a relative tolerance.

sort Sorts the given array. Note: The array is sorted in place. Available for
string, double, or integer arrays.

merge Returns an array with all of the elements merged from the given arrays.
Available for string, double, or integer arrays.

NAME DESCRIPTION

with Used to make code more compact.

endwith The ending of a with statement.

set Sets a Boolean, integer, double, or string property value. Allows
for a scalar, array, or matrix property.
300 |

setIndex Sets a string, double, or integer property value for a matrix or
vector at a given index..

getIntArray Gets an integer vector property.

getIntMatrix Gets an integer matrix property.

getBoolean Gets a Boolean property.

getBooleanArray Gets a Boolean vector property.

getBooleanMatrix Gets a Boolean matrix property.

getDouble Gets a double property.

getString Gets a string scalar, vector, or matrix property.

getDoubleArray Gets a double vector property or parameter.

getDoubleMatrix Gets a double matrix property or parameter.

getStringArray Gets a string vector property or parameter.

getStringMatrix Gets a string matrix property or parameter.

getDblStringArray Returns the value as a matrix of strings.

getInt Gets an integer property.

get Returns a variable expression.

descr Returns a variable description.

NAME DESCRIPTION
 | 301

Appendix F — Guidelines for Building Applications

General Tips
• Include reports to files with input data and corresponding output data.
• Make it intuitive. Provide help, hints, and documentation as necessary.
• Make it foolproof: “Safe I/O”, “Reset to default data”, etc.
• Save a thumbnail image with the model.
• Include a description text (It will be visible in the COMSOL Server library).
• Test the application on the computer platforms for which it is intended.
• Be minimalistic. From the developer’s point of view, it is much easier to

make sure logic works, organize, debug, maintain, and further develop the
app. From a user’s point of view, it is easier to use the application. The
minimalistic approach requires more care while developing but much less
maintenance later on and much higher adoption among users.

• Embed libraries in the model if they are of manageable size.
• Display the expected computation time and, after the computation, the

actual computation time.
• When a computation is canceled, output data from the previous

computation should be cleared.
• Password protect as needed. (Remember: No one can help you if you forget

the password.)

Methods
• Do not create more methods than necessary.

Fewer methods give you a shorter list of methods to browse through when
looking for something. Fewer methods usually mean fewer lines of code to
worry about.
- If several methods you wrote do essentially the same thing, consider merging

them into one method and dealing with the different cases by input
arguments.

- Do not create a method if it is only called from one place. Insert the code
right into that place instead.

• Create a local method if it is only used in a form, or triggered by a form
event or a form object event.

• Give methods descriptive names and name them so that similar methods are
grouped together when sorted alphabetically. You will have less to
302 |

remember and you will find what you are looking for easier. Long names are
better than hard-to-understand short names.
Method naming examples:
- Start all methods that do not deliver any output by p (p for procedure).
- Start all methods that deliver output with f (f for function).
- Start all menu item methods with m (m for menu).
- Start a method that you will visit frequently with a to make it appear first in

the list.
- Start all your plot methods with Plot (mPlotMesh, mPlotResults, for menu

item methods).
• The points above apply to method code as well: be minimalistic, use as few

lines of code and variables as possible, use descriptive names for variables,
use long names instead of hard-to-understand short names, and optimize
code to run efficiently.

• The above points apply to declarations as well: use good names, don't use
more than necessary, and declare variables where they are used (in forms and
methods or in the model).

Forms
• Do not create more forms than necessary.
• Give forms descriptive names. Same reasoning as for methods.
• Make good use of the many different types of form objects. Some are good

for some things, while some are good for others.
• Do not insert more form objects than necessary. Too many options for input

data may make the application hard to use. Too much output data makes it
hard to find important information.

• Insert a text field for the user to leave comments to save with the user’s set
of input and output data when saving the application.

• Consider inserting a button with a method to reset to default data.
• Apply “Safe I/O”:

- For input fields, alert the user about input data that is out of bounds. You can
do that either by an alert triggered by an On Data Change event for an input
field, or by setting limits in the form objects settings window, which then sets
hard limits. In a method generating the alert, you may just warn the user and
then allow the input data if the user chooses to go ahead anyway.

- On output fields, give the precision that makes sense. If current results are
not based on current input data, show it. If the computation failed, show it.
 | 303

• Include tooltips, help, documentation, hints, and comprehensive reports.
• Provide the user with information about how long it takes to run the

simulation with default input data on a typical computer. It could be
seconds, hours, or even days depending on the application, so that is
something the user would like to know before hitting the compute button.
Consider playing a sound to alert the user when the computation has
finished. The user may be doing something else while waiting for results.
(Sending an email message with a report to the user or some other place
when the computation is done may be a better alternative if the computation
is really long.)

• Spend some time on the layout of a form. A good-looking form makes it
easier and more fun to use the application.

• Consider setting keyboard shortcuts for buttons and menu items.
304 |

NA

Be

H

Tr

Tu

Tu

Ef

In

M

To

A

A

O

O

Sm

C

El

Li

In

N

W

Appendix G — The Application Library Examples

In the Application Libraries, you can find example applications that showcase the
capabilities of the Application Builder. They are collected in folders with the name
Applications and are available for many of the add-on products. You can edit these
applications and use them as a starting point or inspiration for your own
application designs. Each application contains documentation (PDF) describing
the application and an option for generating a report.
Below is a partial list of the available application examples organized as they appear
in the Application Libraries tree.

ME APPLICATION LIBRARY

am Subjected to Traveling Load COMSOL Multiphysics

elical Static Mixer COMSOL Multiphysics

ansmission Line Calculator COMSOL Multiphysics

bular Reactor COMSOL Multiphysics

ning Fork COMSOL Multiphysics

fective Nonlinear Magnetic Curves AC/DC Module

duction Heating of a Billet AC/DC Module

agnetic Prospecting AC/DC Module

uchscreen Simulator AC/DC Module

bsorptive Muffler Designer Acoustics Module

coustic Reflection Analyzer Acoustics Module

ne-Family House Analyzer Acoustics Module

rgan Pipe Design Acoustics Module, Pipe Flow Module12

all Concert Hall Analyzer Acoustics Module

yclic Voltammetry Electrochemistry Module, Electrodeposition
Module, Batteries & Fuel Cells Module, Corrosion
Module

ectrical Impedance Spectroscopy Electrochemistry Module, Electrodeposition
Module, Batteries & Fuel Cells Module, Corrosion
Module

-Ion Battery Impedance Batteries & Fuel Cells Module1

kjet CFD Module, Microfluidics Module

ACA Airfoil Optimization CFD Module8

ater Treatment Basin CFD Module
 | 305

Bi

Li

M

Sh

Fr

Pa

C

H

Eq

Fl

Fo

In

Pa

T

M

M

R

M

C

Io

C

Tr

St

La

G

C

D

C

Fr

M

Pl

W

N

osensor Design Chemical Reaction Engineering Module

quid Chromatography Chemical Reaction Engineering Module

embrane Dialysis Chemical Reaction Engineering Module

ip Hull ICCP Corrosion Module

ame Fatigue Life Fatigue Module11

rameterized Concrete Beam Geomechanics Module11

oncentric Tube Heat Exchanger Heat Transfer Module2

eat Sink with Fins Heat Transfer Module

uivalent Properties of Periodic Microstructures Heat Transfer Module

ash Method Heat Transfer Module

rced Air Cooling with Heat Sink Heat Transfer Module

line Induction Heater Heat Transfer Module9

rasol and Solar Irradiation Heat Transfer Module

hermoelectric Cooler Heat Transfer Module

EMS Pressure Sensor Swelling MEMS Module, Structural Mechanics Module

icroresistor Beam MEMS Module

ed Blood Cell Separation Microfluidics Module, Particle Tracing Module3

ixer Mixer Module4

harge Exchange Cell Simulator Molecular Flow Module, Particle Tracing
Module10

n Implanter Evaluator Molecular Flow Module

entrifugal Governor Multibody Dynamics Module11

uck Mounted Crane Analyzer Multibody Dynamics Module5,11

ress Analysis of a Pressure Vessel Nonlinear Structural Mechanics Module11

minar Static Particle Mixer Designer Particle Tracing Module

eothermal Heat Pump Pipe Flow Module

CP Rector Plasma Module

istributed Bragg Reflector Filter Ray Optics Module

orrugated Circular Horn Antenna RF Module

equency Selective Surface Simulator RF Module

icrostrip Patch Antenna Array Synthesizer RF Module

asmonic Wire Grating RF Module, Wave Optics Module

avelength Tunable LED Semiconductor Module

AME APPLICATION LIBRARY
306 |

Be

Bi

In

Tr

Tr

Vi

Fib

Pl
1R
2W
3I
Tr
M
4R
5R
6A
7I
ap
8R
9R
10

11

12

13

NA
The following sections highlight the example applications listed in the table above.
The highlighted applications exemplify a variety of important Application Builder
features, including the use of animations, email, optimization, parameter
estimation, tables, and the import of experimental data.

Beam Subjected to Traveling Load
This application simulates the transient response of a beam that is placed on several
equidistant supports and is subjected to a traveling load. The purpose of the
application is to analyze the response of the bridge when vehicles pass over it. It is
observed that for a bridge with given geometric and material properties, certain
vehicular speeds cause resonance in the bridge and it undergoes high amplitude

am Section Calculator Structural Mechanics Module6

ke Frame Analyzer Structural Mechanics Module13

terference Fit Structural Mechanics Module

uss Bridge Designer Structural Mechanics Module

uss Tower Buckling Structural Mechanics Module

scoelastic Structural Damper Structural Mechanics Module

er Simulator Wave Optics Module

asmonic Wire Grating RF Module, Wave Optics Module7

equires the Batteries & Fuel Cells Module and the Optimization Module.

ill run with either the CFD Module, Heat Transfer Module, Microfluidics Module, or Plasma Module.

n the Microfluidics Module version, this application requires the Microfluidics Module and the Particle
acing Module. In the Particle Tracing Module version, this application requires the Particle Tracing
odule and either the CFD Module, Microfluidics Module, or Subsurface Flow Module.

equires the CFD Module and the Mixer Module.

equires the Structural Mechanics Module and the Multibody Dynamics Module.

n extended version of this application is available that also requires the LiveLink™ for Excel® product.

n the RF Module version, this application requires the RF Module. In the Wave Optics Module, this
plication requires the Wave Optics Module.

equires the CFD Module and the Optimization Module.

equires the Heat Transfer Module and the AC/DC Module.

Requires the Molecular Flow Module and the Particle Tracing Module.

Also requires the Structural Mechanics Module.

Requires the Acoustics Module and the Pipe Flow Module.

For full parametric functionality, this application requires the LiveLink™ for SOLIDWORKS®.

ME APPLICATION LIBRARY
 | 307

oscillation. In the application, a 2D plane stress approximation is assumed to
model the beam. The beam is made of concrete.
The application demonstrates the use of animation and sliders. The first slider
displays deformation versus load position and the second slider shows the time
evolution of the displacement. This application does not require any add-on
products.

Helical Static Mixer
The purpose of this application is to demonstrate the use of geometry parts and
parameterized geometries. In addition, the application can be used to estimate the
degree of mixing in a system including one to five helical blades, typically for
mixing of monomers and initiators in polymerization reactions. The application is
limited to Newtonian liquids, which is a good approximation in the cases where
polymerization is negligible in the mixer itself. The application demonstrates the
308 |

use of form collections of the type Tiled or tabbed. This application does not
require any add-on products.

Transmission Line Calculator
Transmission lines are used to guide waves of alternating current and voltage at
radio frequencies. Transmission lines exist in a variety of forms, many of which are
adapted for easy fabrication and employment in printed circuit board designs.
They are key elements in most modern electronic devices and are used to carry
information, at minimal loss and distortion, from one place to another within a
device and between devices.
This application provides predefined user interfaces for computing the
transmission line parameters R, L, G, and C, as well as γ and Z0 for parameterized
cross sections of some common transmission line types:
• Coaxial line
• Twin lead
• Microstrip line
• Coplanar waveguide (CPW)
 | 309

Plots of the geometry, mesh, electric potential, electric field line, and magnetic
flux lines are also provided. This application does not require any add-on products.

Tubular Reactor
With this application, students in chemical engineering can model a nonideal
tubular reactor, including radial and axial variations in temperature and
composition, and investigate the impact of different operating conditions. The
process described by the application is the exothermic reaction of propylene oxide
with water to form propylene glycol.
The application also exemplifies how teachers can build tailored interfaces for
problems that challenge the students’ imaginations. The model and exercise are
originally described in Scott Fogler’s Elements of Chemical Reaction
Engineering.
The mathematical model consists of an energy balance and a material balance
described in an axisymmetric coordinate system. The students can change the
activation energy of the reaction, the thermal conductivity, and the heat of
reaction in the reactor. The resulting solution gives the axial and radial conversion
as well as temperature profiles in the reactor. For some data, the results from the
310 |

simulation are not obvious, which means that the interpretation of the model
results also becomes a problem-solving exercise.
Note that you may also have the application send an email when the computation
is ready by selecting the email check box and entering an email address. This sends
a report with the settings and the computed results. The functionality can be used
by students to send the results to a supervisor. For computations that take a longer
time to compute, this functionality may be of great use. For example, you can start
a simulation and leave the office or laboratory, then get the full report from the
application when the computation is done, which you can access on the road or
wherever you have access to email. This application does not require any add-on
products.

Tuning Fork
This application computes the resonant frequency of a tuning fork with a
user-defined prong length. Alternatively, you can give a user-defined target
frequency and the application will find the corresponding prong length. The
prong and handle radii are taken from a commercially available tuning fork.
 | 311

The model embedded in the application is defined using the Solid Mechanics
interface included in COMSOL Multiphysics and does not require any add-on
products. The prong length search algorithm is a secant method.
At the end of the computation, the built-in method playSound is used to produce
a sine wave sound at the computed frequency.
For more background theory, see the Application Library documentation for the
model tuning_fork.mph.

Induction Heating of a Steel Billet
This application can be used to design a simple induction heating system for a steel
billet, consisting of one or more electromagnetic coils through which the billet is
moved at a constant velocity. The coils are energized with alternating currents and
induce eddy currents in the metallic billet, generating heat due to Joule heating.
The billet cross section, coil number, placement, size, initial and ambient
temperatures, and individual coil currents can all be specified as inputs. After the
solution has been computed, the application displays 3D plots of the billet
temperature during processing, the induced electric current density, and a 2D plot
of the temperature at the outlet cross section. Finally, the application computes
312 |

numerical data for the expected temperature ranges in the billet and the power
balance of the system.

Touchscreen Simulator
This application computes the capacitive response of a small touchscreen in the
presence of a human finger phantom. This information can be used by an
electronic circuit to derive the position of the finger. In the application, the
 | 313

position and orientation of the finger are controlled via input parameters, and the
resulting capacitance matrix is computed as output.

Absorptive Muffler Designer
The purpose of this application is to study and design a simple resonant muffler
with a porous lining. Mufflers are used to attenuate noise emitted by, for example,
a combustion engine or an HVAC system and should typically perform well in a
specific frequency range. The measure of the attenuation is called the transmission
loss (TL) and gives the damping in dB as a function of frequency. The
transmission loss depends on the geometry of the muffler and on the
characteristics of porous and fibrous materials that can be placed in the system.
This application is used to study the results of modifying the dimensions of a
muffler; the ambient working conditions; and the material properties of the
porous liner — that is, how changes influence the transmission loss of the system
This application is an example of a “dynamic specification sheet” for a given
muffler model. A sales engineer can bring this type of application to customers and
show them the performance of a custom muffler designed specifically for them. A
muffler may, for example, be designed to be placed in a vehicle with spatial
314 |

constraints. In this case, the performance can be readily visualized and different
options can be investigated together with the customer.

Acoustic Reflection Analyzer
This application analyzes the reflections of plane waves off a water-sediment
interface. The reflection and absorption coefficients are determined as functions of
the angle of incidence and the frequency. Moreover, the random-incidence
absorption coefficient, or diffuse field absorption coefficient, is calculated based on
the simulated data. The material properties of the fluid, in this case water, and the
 | 315

properties of the porous medium, here a semi-infinite sediment layer, can be
modified.

Li-Ion Battery Impedance
The goal with this application is to explain experimental electrochemical
impedance spectroscopy measurements (EIS) and to show how you can use the
model and the measurements to estimate the properties of lithium-ion batteries.
The application takes experimental data from EIS measurements as input,
simulates these measurements, and then runs a parameter estimation based on the
experimental data.
The control parameters are the exchange current density, the resistivity of the
resistive layer on the particles, the double-layer capacitance of NCA, and the
double-layer capacitance of the carbon support in the positive electrode. The
fitting is done to the measured impedance of the positive electrode at frequencies
ranging from 10 mHz to 1 kHz.
316 |

The application demonstrates loading experimental data on the comma-separated
values (CSV) file format and utilizes the Optimization Module for parameter
estimation.

Inkjet
The purpose of this application is to adapt the shape and operation of an inkjet
nozzle for a desired droplet size, which depends on the contact angle, surface
tension, viscosity, and density of the injected liquid.
 | 317

The results also reveal whether the injected volume breaks up into several droplets
before merging into a final droplet at the substrate.

Water Treatment Basin
The purpose of the Water Treatment Basin application is to exemplify the use of
applications for modeling turbulent flow in liquids in 3D. An interesting aspect of
the application is that it also accounts for the material balance of a solute in a
solution. This solute reacts in a first-order reaction, a common type of reaction for
describing the decay of highly diluted chemical species. This application also
shows how to use fully parameterized geometries and cumulative selections for
modeling turbulent flows.
The application can be used as a starting point for your own application for
modeling the turbulent steady flow of liquids with reactions of highly diluted
solutes.
318 |

The exemplified system is a chlorination basin in a water treatment process.

Biosensor Design
A flow cell in a biosensor contains an array of micropillars used to detect
biomolecules. The pillars are coated with an active material that selectively adsorbs
biomolecules in the sample stream. These biomolecules then react on the surface.
This application allows the user to change the design of the sensor by altering
parameters such as pillar diameter, grid spacing, and inlet velocity to investigate
how the design affects the detection results. The geometry and operating
conditions have a great impact on the signal strength and diffuseness.
 | 319

Also, manufacturing constraints, set by a minimum distance between pillars, are
reported in the application.

Membrane Dialysis
This application simulates the contaminant concentration within a bloodstream
that is purified within a membrane dialysis device. The modeled dialysis device is
made of a hollow fiber module, where the walls of the hollow fibers act as a
membrane for removal of the contaminant. Within the fibers, the dialysate flows,
whereas on the outside, the permeate passes. Through variation of the input
320 |

parameters, the application can examine approaches on how to maximize the
contaminant removal within the device.

Concentric Tube Heat Exchanger
Dimensioning quantities are the first indicators of the behavior of a heat
exchanger. This application aims to compute these quantities for a given
configuration.
The example application studies the case of two concentric tubes separating two
distinct fluids. The fluids can run either in counterflow or in parallel flow. Both
tubes and fluids can be customized through the user interface.
After the computation, the temperature profile and several quantities are
displayed. Additional inputs are fluid properties such as available volume and mass,
 | 321

compactness (the ratio of exchanged surface to heat exchanger volume), and
material properties.

Heat Sink with Fins
Heat sinks are usually benchmarked with respect to their ability to dissipate heat
for a given fan curve. One possible way to carry out this type of experiment is to
place the heat sink in a rectangular channel with insulated walls. The temperature
and pressure at the channel’s inlet and outlet, as well as the power required to keep
the heat sink base at a given temperature, is then measured. Under these
conditions, it is possible to estimate the amount of heat dissipated by the heat sink
and the pressure loss over the channel.
The purpose of this application is to investigate of benchmark experiments using
modeling and simulation. For example, the amount of heat dissipated may
increase with the number of fins until the fins create such a large obstruction to
the flow that the flow decreases and lowers the amount of heat dissipated. This
implies that for a given total pressure loss over the channel, there may be optimal
322 |

dimensions and a number of fins that give the highest cooling power. This
application enables you to perform such investigations.

Equivalent Properties of Periodic Microstructures
Periodic microstructures are frequently found in composite materials, such as
carbon fibers and honeycomb structures. They can be represented by a unit cell
repeated along three directions of propagation. To reduce computational costs,
simulation may replace all of the details of a composite material with a
homogeneous domain with equivalent properties.
This application computes equivalent properties from the geometrical
configuration and the material properties of a unit cell. It offers a choice between
nine parameterizable unit cells and a list of 13 predefined materials. Extending this
application to additional parallelepiped unit cells or adding other materials is
straightforward.
In diffusion-like equations such as the heat equation, the equivalent diffusion
coefficient takes the general form of a tensor.
In this application, the following material properties are computed from a selected
unit cell shape with given materials in the different regions of the unit cell:
• Density
• Heat capacity at constant pressure
• Thermal conductivity
 | 323

The built-in unit cell library in this application includes several widely used cell
types, such as parallel stacked layers, fiber-reinforced composites, or honeycomb
structures. Once the geometry is set, the physics consists of periodic heat
conditions at opposite boundaries of the cell.

Red Blood Cell Separation
Dielectrophoresis (DEP) is a phenomenon in which a force is exerted on a
dielectric particle when it is subjected to a nonuniform electric field. The electric
field induces a polarization in the particles, which are then subject to a DEP force
that is proportional to the gradient of the electric potential.
The DEP force is sensitive to the size, shape, and dielectric properties of the
particles. This allows DEP to be used to separate different kinds of particles. One
application of this process is in the field of bioengineering, where DEP can be used
to separate different kinds of cells from a mixture. This example application shows
how red blood cells can be selectively filtered from a blood sample in order to
isolate red blood cells from platelets. This is useful because platelets cause blood
324 |

to clot, which can lead samples contaminated with platelets to be unsuitable for
subsequent testing once a clot has formed.

Mixer
The purpose of the Mixer application is to provide a user-friendly interface where
scientists, process designers, and process engineers can investigate the influence
that vessel, impeller, and operational conditions have on the mixing efficiency and
power required to drive the impellers. The application can be used to understand
and optimize the design and operation of the mixer for a given fluid. But, perhaps
most importantly, the Mixer application can be used as a starting point for your
own application for the modeling and simulation of mixers and reactors.
The application demonstrates how parts and cumulative selections can be used to
automatically set domain and boundary settings in the embedded models. These
 | 325

settings can be created automatically, even when the choices made by an
application user create very diverse geometries.
326 |

Truck Mounted Crane Analyzer
Many trucks are equipped with cranes for load handling. Such cranes have a
number of hydraulic cylinders that control the crane’s motion, and several
mechanisms.

In this application, a rigid-body analysis of a crane is performed in order to find
the payload capacity for the specified orientation and extension of the crane. This
application also provides the usage of hydraulic cylinders and highlights the
limiting cylinder. The capacity of the hydraulic cylinders can be modified in order
to improve the payload capacity and the usage of the cylinders.

Laminar Static Particle Mixer Designer
In static mixers, also called motionless or in-line mixers, a fluid is pumped through
a pipe containing stationary blades. This mixing technique is particularly well
suited for laminar flow mixing because it generates only small pressure losses in
this flow regime. This application studies the flow in a twisted-blade static mixer.
It evaluates the mixing performance by calculating the trajectory of suspended
particles through the mixer. The application computes the static mixing of one
species dissolved in a solvent at room temperature. You can study the effect of fluid
 | 327

and particle properties as well as the stationary blades’ configuration on the
particle mixing.

Distributed Bragg Reflector Filter
A distributed Bragg reflector (DBR) consists of alternating layers of two materials.
Each material has a different refractive index, resulting in a repeating pattern of
high and low refractive indices in the direction perpendicular to the DBR layers.
As light propagates through this structure, reflections occur at each interface
between the layers. Interference effects between the multiple reflected waves cause
the reflectivity of the DBR to be highly wavelength dependent. The main
advantage of DBRs over ordinary metallic mirrors is that DBRs can be engineered
to have custom reflectances at selected wavelengths.
328 |

This application can be used to study the reflectance from a simple optical notch
filter, based on a cavity sandwiched between two distributed Bragg reflectors.

Frequency Selective Surface Simulator
Frequency selective surfaces (FSS) are periodic structures that generate a bandpass
or a bandstop frequency response. This application simulates a user-specified
periodic structure chosen from the built-in unit cell types. It provides five popular
FSS unit cell types, with two predefined polarizations and propagation at normal
incidence.
 | 329

The analysis includes the reflection and transmission spectra, the electric field
norm on the top surface of the unit cell, and the dB-scaled electric field norm
shown on a vertical cut plane in the unit cell domain.

Microstrip Patch Antenna Array Synthesizer
This application simulates a single slot-coupled microstrip patch antenna that is
fabricated on a multilayered low-temperature cofired ceramic (LTCC) substrate.
Results include the far-field radiation pattern of the antenna array and its
directivity. The far-field radiation pattern is approximated by multiplying the array
factor and the single antenna radiation pattern to perform an efficient far-field
analysis without simulating a complicated full array model. Phased antenna array
prototypes for 5G mobile networks can easily be evaluated with the default input
330 |

frequency, 30 GHz. The application also demonstrates an animation where the
camera is moved around the antenna.

Wavelength Tunable LED
Blue LEDs are interesting because of their use in modern high-efficiency lighting.
Due to their large bandgap energy, gallium nitrides are widely used for generating
blue light. This application simulates the emission properties of a
gallium-nitride-based light-emitting diode.
The material used in the active region of the device is InxGa1•xN, which contains
a blend of both gallium and indium where the fraction of indium is given by x.
The bandgap of this optically active region can be controlled by varying the
composition of the material via changing the indium fraction. Because pure InN
and GaN emit in the infrared and ultraviolet parts of the spectral range
respectively, it is possible to tune the emission energy of InxGa1•xN across the
entire visible spectrum using this technique.
This application enables the indium fraction and operating voltage of the device
to be controlled. The current, emission intensity, electroluminescence spectrum,
and internal quantum efficiency of the device can then be computed. Either a
single operating voltage or a range of voltages can be input. If a range of voltages
 | 331

is input, the current-voltage curve is also calculated, which allows the turn-on
voltage of the device to be determined. This application uses methods extensively.

Beam Section Calculator
This application computes the beam section properties for a designated steel beam
section. It also allows for computing the detailed stress distribution over the cross
section given a set of forces and moments acting on it. A broad range of American
and European standard beams are available. With a license for the LiveLink™ for
Excel® product, all input and results data is displayed in a table that can be
exported to an Excel® file. It is possible to edit the Excel® workbook that contains
the beam dimensions data and reimport this data back into the application.
332 |

Truss Tower Buckling
Buckling analysis is the search for the critical compressive load beyond which
structures become unstable. This application can simulate the buckling of a truss
tower under vertical compressive loads. The tower can optionally be supported by
guy wires. The purpose of the application is to compute and analyze the buckling
load for towers under different conditions of geometry, i.e., various tower heights,
cross-sectional area, as well as different materials. The application takes into
 | 333

account the effect of dead load (self-weight of truss and supporting guy wires and
their pretension) while performing the computation.

Fiber Simulator
This application performs mode analyses on concentric circular dielectric layer
structures. Each layer is described by an outer diameter and the real and imaginary
parts of the refractive index. The refractive index expressions can include a
dependence on both wavelength and radial distance. Thus, the simulator can be
used for analyzing both step-index fibers and graded-index fibers. These fibers can
334 |

have an arbitrary number of concentric circular layers. Computed results include
group delay and dispersion coefficient.

Plasmonic Wire Grating
This application computes diffraction efficiencies for the transmitted and reflected
waves (m = 0) and the first and second diffraction orders (m = ±1 and ±2) as
functions of the angle of incidence for a wire grating on a dielectric substrate. The
incident angle of a plane wave is swept from normal incidence to grazing
 | 335

incidence. The application also shows the electric field norm plot for multiple
grating periods for a selected angle of incidence.
336 |

Index

1D array 130

2D array 132

3D coordinates 236

A about to shutdown event 118

action 49, 52, 117

activation condition 196, 203

active card selector 225

add-on products 8, 305

alert 174, 291

aligning form objects 95, 103

animation 72, 307

appearance

button object 62

forms 40, 42

graphics object 64

input field object 83

multiple form objects 47

table 251

text 46

append unit from unit set 139

append unit to number 79, 256

application

saving 265

Application Builder 17

desktop environment 10, 16

window 10, 12, 14

application example

absorptive muffler designer 314

acoustic reflection analyzer 315

beam section calculator 332

beam subjected to traveling load 307

biosensor design 319

concentric tube heat exchanger 321

distributed bragg reflector filter 328

equivalent properties of periodic mi-

crostructures 323

fiber simulator 334

frequency selective surface simulator

329

heat sink with fins 322

helical static mixer 308

induction heating of a steel billet 312

inkjet 317

laminar static particle mixer designer

327

li-ion battery impedance 316

membrane dialysis 320

microstrip patch antenna array syn-

thesizer 330

mixer 325

plasmonic wire grating 335

red blood cell separation 324

touchscreen simulator 313

transmission line calculator 309

truck mounted crane analyzer 327

truss tower buckling 333

tubular reactor 310

tuning fork 311

water treatment basin 318

wavelength tunable LED 331

Application Gallery 25

Application Libraries 8, 24, 25, 35, 305

Application Library

COMSOL Server 29

application object 143

Application Programming Guide 143

application tree 10, 12, 14

applications folder 8, 25, 305

apply changes 20

arranging form objects 95

array 130
 | 337

1D 130

2D 132

syntax 132

array input object 122, 235

auto complete 162

B background color 42

background image 42

BMP file 176

Boolean variable 127, 129, 130, 131,

184

conversion 298

breakpoint 168

built-in method library 285

button 51, 63, 93, 163

command sequence 52

icon 51

keyboard shortcut 52

on click event 51, 52

size 51

tooltip 52

buttons tab, New Form wizard 38

C C libraries

external 294

CAD-file import 228, 267, 268

cancel shutdown 118

card 224

card stack object 93, 127, 128, 224, 231

cell margins 102, 108

cells

merging 101

splitting 101

check box object 93, 122, 129, 147, 164,

184

check syntax 156

choice list 50, 124, 133, 134, 189, 193,

198, 206, 207, 240, 241, 248, 249,

292

clipboard 211, 219, 261

close application icon 118

code completion 162

column settings 100, 107

combo box object 93, 122, 127, 133,

136, 188

command sequence 15, 38, 39, 52, 55,

56, 63, 71, 73, 114, 117, 121, 143,

165, 166, 177, 254, 259

common, file scheme 267, 282

compatible with physical quantity, unit

dimension check 80

compatible with unit expression, unit

dimension check 80

computation time 235

expected 86, 232, 234

last 86, 234, 297

COMSOL Client 8, 20, 22, 28, 30

file handing 263

running applications in 30, 263

COMSOL Desktop environment 10,

16

COMSOL Multiphysics 8, 20, 21, 26, 27,

30, 108, 143, 170, 213, 216, 217

COMSOL Server 8, 20, 22, 25, 27, 28,

30, 31, 267

manual 33

confirm 174, 291

convert to new method 15, 56, 58, 143,

271

copying

forms and form objects 108, 261

objects 45

rows or columns 101

creating

forms 13, 35

local method 57, 164

methods 15

CSV file 128, 219, 254, 255, 317

curly brackets 161
338 |

D DAT file 128, 219, 254, 255

data change 49, 122, 166, 186, 187, 303

data display object 82, 85, 93

information node 234

tooltip 88

data file 128, 219, 254

data validation 79, 139

date 296

debug log window 169, 294

debugging 168, 294

declarations node 11, 124, 184

delete button 45, 55, 229

deleting an object 45

derived values 85, 219

description text

Boolean variable 186

derived value 84

dialog box 291

disable form object 292

display name, for choice list 133, 190,

241, 248, 292

displayed text 46

double variable 127, 130, 131

conversion 298

double, data validation 81

drag and drop, form objects 44

duplicating

rows or columns 101

duplicating an object 45

E edit local method 166

edit node 53, 149, 151

editor tools 49, 148, 153, 192, 193

window 14

editor tree 50, 53, 65, 148, 264, 265

element size 92

change 204

email 258, 307

class 288

methods 288

email attachment

export 288

report 288

table 288

embedded, file scheme 175, 179, 267,

274

enable form object 292

enabled state, for form objects 62

equation object 208

error message, data validation 79, 82

errors and warnings window 156

event 49, 117, 122, 163, 195

about to shutdown 118

button on click 52

for multiple form objects 47, 122

form 122

form object 122

global 11, 94, 117

keyboard shortcut 52

local 117

node 118

on close 123

on data change 49, 122, 166, 186,

187, 303

on load 49, 123

on startup 118

events node 11

Excel® file 128, 219, 254

experimental data 307

explicit selection 75

explicit selections 74

exponent, number format 86

export

email attachment 288

export button, results table 219

export node 263, 276

exporting

results 263, 276

external C libraries 294
 | 339

extracting subform 97

extracting variable 159

F file

commands 264

declaration 135

destination 229, 269

download 30, 265

import 53, 122, 135, 175

menu 115

methods 286

opening 264

saving 265

types 229

upload 30, 265

file import object 122, 135, 175, 228,

263, 268

file open

system method 288

file scheme

common 267, 282

embedded 175, 179, 267, 274

syntax 175

temp 267

upload 135, 267, 272, 275

user 267, 281

filename 229, 269, 286

files library 179

find 157

fit, row and column setting 97, 100

fixed, row and column setting 97, 100

for statement 172

form 12, 41

form collection 93, 111, 222

Form editor 17

desktop location 10

overview 12

preferences 16, 43

using 40

form event 122

form object 12, 44, 49, 180

event 122

with associated methods 147

form reference 222

form tab, in ribbon 12

form window 12

forms node 11, 40

function 14

G geometry 27, 38, 53, 64, 68, 77, 243,

261, 270, 272, 291

import 228, 267, 268

operations 213, 216, 217

geometry node 53

get 301

GIF file 176

global evaluation 85, 224

global event 11, 117

global method 15, 122, 143

global parameter 173

go to method 15, 56, 145

graphics 57

animation 72

commands 65

hardware limitations 67

object 36, 38, 63, 291

plot group 68

source for initial graphics content 63

tab, New Form wizard 38

toolbar 68, 93

using multiple objects 67

view 66, 72, 293

grid layout mode 30, 42, 94

grid lines, sketch layout mode 95

grow, row and column setting 97, 100

growth rules 97

H HTML

code 210

report 210, 282
340 |

HTTP and HTTPS protocols 258

hyperlink object 257

I icon 175, 259

button 51

close application 118

command 53

graphics 64

help 81

main window 110

menu item 114

method 147

ribbon item 114

toolbar 259

if statement 172

image

background 42

formats 176

object 211

thumbnail 25

images library 175

import

file 53, 122, 135, 175, 229, 269

information card stack object 93, 231

information node 234

inherit columns 107

initial size, of main window 111

initial values, of array 131

initialize

parameter 58

variable 58

input argument, to method 166

input field object 77, 93, 122, 127, 139

adding 77

information node 234

text object 84

tooltip 79

unit object 84

inputs/outputs tab, New Form wizard

36

inserting

form objects 48, 49

rows and columns 97, 99

rows or columns 101

integer

data validation 81

variable 127, 130, 131

variable conversion 298

item

menu 113, 163

ribbon 116

toolbar 258

J Java® programming language 143, 170

JPG file 26, 176

K keyboard shortcut 16, 49, 117, 151, 162,

163, 170, 283

event 52, 114, 259

L language elements window 14, 148, 170

LaTeX 84, 87, 208

layout mode 42, 94

layout options, form collection 222

libraries node 11, 175, 211

line object 209

list box object 93, 122, 127, 133, 136,

246

LiveLink™ for Excel® 128, 219, 254

LiveLink™ products 30

local event 117

local method 15, 49, 57, 117, 122, 123,

143, 147, 163, 164, 166, 186, 190,

261

log object 216

logo image 64

low-resolution displays 30

M main form 111

main window 111, 213

node 11, 110

margins
 | 341

cell 102, 108

material 196

math functions 172

menu 113, 116

bar 111, 112

item 63, 93, 113, 163

toggle item 113, 181

menu toggle item 93

merging cells 97, 101

mesh 38, 64, 68, 92

change element size 204

size 92

meshing 213, 216, 217

message log object 217, 291

method 11, 14, 47, 56, 63, 124, 143, 285

event 118, 122

form object 147

global 15, 122, 143

local 15, 49, 57, 117, 122, 123, 143,

147, 163, 186, 190, 261

tab, in ribbon 14

window 14

Method editor 17, 285

desktop location 10

overview 14

preferences 161

using 143

methods node 11

Microsoft® Word® format 280

minimum size

form objects 102

model commands 265

model data access 93, 120, 151, 155,

261

model expressions window 14, 158

model object 143, 170, 285

model utility methods 285

move down

command sequence 55

table 253

move up

command sequence 55

table 253

MP4 file 211

MPH file 11, 20, 21, 23, 27, 35, 39, 175,

266, 294

multiline text 85

multiple form objects

selecting 47, 122

N name

button 51

check box 186

choice list 133

extract variable 159

form 41

form object 47

graphics object 63

menu 113

method 161

shortcut 141

variable 126

named selections 74

new element value 131

new form 13

New Form wizard 48, 49, 50, 84

buttons tab 38

graphics tab 38

inputs/outputs tab 36

new method 15

notation

data display number format 86

results table 219

number format 82, 86

number of rows and columns 97

numerical validation 81, 139

O OGV file 211

on click event, button 51
342 |

on close event 123

on data change event 49, 122, 166, 186,

187, 303

on load event 49, 123

on startup event 118

open file 264

operators 171

optimization 307, 317

OS commands 288

output argument, to method 166

P panes 222

parameter 14, 37, 57, 79, 127, 173, 261,

301

combo box object 188

declarations 11, 124

estimation 307

events 11, 117

input field object 77

method 156, 172

slider object 256

text label object 84

parentheses 161

password protected application 26

pasting

form objects 45

forms and form objects 109

image 211

rows or columns 101

pixels 46, 94

play sound 30, 178, 288

player, animation 72

plot 38, 53, 63, 68, 129, 185, 191, 249,

258, 271, 279, 291, 303

plot geometry command 53

plot group 57

PNG file 26, 175, 176

position and size 46, 94, 96

multiple form objects 47

positioning form objects 44

precedence, of operators 171

precision, number format 86, 219

preferences 16, 43, 161, 267, 268

security 27

preview form 20

printing

graphics 66, 294

procedure 14

progress 213, 296

progress bar object 213, 296

progress bar, built in 213

progress dialog box 215, 296

Q Quick Access Toolbar 20

find 157

R radio button object 93, 122, 133, 136,

239

recording code 153

recursion 167

regular expression 81

removing

password protection 27

rows and columns 97, 99

rows or columns 101

report 302, 305

creating 114, 263, 276, 280, 281

email attachment 288

embedding 210

HTML 210, 282

image 26

node 263, 276, 281

request 174, 291

reset current view 66, 72

resizable graphics 30

resizing form objects 44

results table object 218, 292

ribbon 111, 116

item 94, 116

section 116
 | 343

tab 116

toggle item 116, 181

ribbon toggle item 93

row settings 99

run application 20, 22

running applications

in a web browser 28, 263

in the COMSOL Client 30

S save

application 39

running application 23

save application command 265

save as 115, 294

save file 265

scalar variable 127, 189, 224, 256

scene light 66, 294

security settings 27

selection 38, 64, 68

explicit 75

selection input object 75, 242

selections 74

separator

menu 113

ribbon 116

toolbar 113, 258

separators

CSV, DAT, and TXT files 255

set value command 92

settings window

Form editor 12

Method editor 14

shortcuts 124, 141

show as dialog command 58

show form command 59

shutdown

cancel 118

sketch grid 95

sketch layout mode 42, 94

slider object 93, 122, 255

smartphones

running applications on 30

solving 213, 216, 217

sound

play 178

sounds library 177

spacer object 259

splitting cells 97, 101

state

enabled, for form objects 62

visible, for form objects 62

status bar 213

stopping a method 170

string variable 11, 58, 117, 119, 127, 130,

188, 190, 198, 222, 233, 245, 271

conversion 298

methods 300

subroutine 14

syntax errors 156

syntax highlighting 160

system methods 288

OS commands 288

T table

email attachment 288

table object 122, 131, 250, 291, 307

tables, model tree 219

tablets

running applications on 30

temp, file scheme 267

test application 20, 22

test in web browser 20

text 114

text color 42

text file 127, 219, 254

text label object 77, 84, 86

text object 93, 122, 245

information node 234

thumbnail image 25, 26

time 296
344 |

time parameter

combo box object 193

title

form 41

main window 110

menu 113

toggle button 93, 181

toggle item

menu 93, 113, 181

ribbon 93, 116, 181

toolbar 113, 219, 258

button, table object 253

graphics 68, 93

item 93, 258

separator 113, 258

tooltip

button 52

data display object 88

input field object 79

slider object 256

toolbar button 259

unit mismatch 80

transparency 66, 294

TXT file 127, 219, 254, 255

U Unicode 84, 87

unit

changing using unit set 136

dimension check 80, 139

expression 79

groups 136

lists 136

object 77, 83

unit set 81, 124, 136, 207, 241, 249

Untitled.mph 23

upload

file scheme 135, 267, 272, 275

URL 210, 257

use as source

array input object 237

card stack object 225

check box object 186

combo box object 189

data display object 85

declaration 125

explicit selection 76, 242

graphics object 63

information card stack object 233

input field object 78

list box object 247

radio button object 240

results table object 219

selection input object 76, 242

slider object 256

table object 251

text object 245

user

file scheme 267, 281

user interface layout 12

username 288

V variable 11, 124, 156

accessing from method 172

activation condition 134

Boolean 129, 130, 184

declaration 11, 124

derived values 86

double 130

events 11, 117, 119

extracting 159

find and replace 158

input field object 77

integer 130

name completion 162

scalar 189, 224, 256

slider object 256

string 127, 130, 188, 190, 222, 233,

245

text label object 84

video
 | 345

controls 212

player 212

video object 211

view

go to default 3D 72

graphics 66, 72, 293

reset current 66, 72

visible state, for form objects 62

volume maximum 85

W WAV file 177

web browser 8, 22

file handling 263

web page

hyperlink 257

web page object 210

WebGL 28

WebM file 211

while statement 172

with statement 161, 172, 300

wrap text

text label object 85

Z zoom extents 64, 66, 249, 271, 294
346 |

	Contents
	Preface
	Introduction
	Running Applications with COMSOL Multiphysics
	Running Applications with COMSOL Server
	Guidelines for Building Applications

	The Application Builder Desktop Environment
	The Application Tree
	The Form editor
	The Method editor
	Application Builder Preferences

	The Application Builder and the Model Builder
	Parameters, Variables, and Scope

	Running Applications
	Running Applications in COMSOL Multiphysics
	Testing an Application
	Running an Application
	Double-Clicking an MPH file
	Testing an Application in a Web Browser
	Test Application vs. Test in Web Browser
	Saving a Running Application
	Application Libraries
	Password Protection
	Security Settings

	Running Applications with COMSOL Server
	Running Applications in a Web Browser
	Running Applications in the COMSOL Client
	Running COMSOL Server on Multiple Computers or a Cluster

	Publishing COMSOL Applications

	Getting Started with the Application Builder
	Starting From a COMSOL Multiphysics Model
	Creating a New Form
	Exiting the Wizard
	Saving an Application

	The Form Editor
	The Forms Settings Window
	The Individual Form Settings Windows
	Sketch and Grid Layout Modes
	Initial Size of a Form

	Form Editor Preferences
	Form Objects
	Positioning Form Objects
	Resizing Form Objects
	Copying, Pasting, Duplicating, and Deleting an Object
	Adjusting Position and Size by the Number of Pixels
	Changing the Appearance of Displayed Text
	Selecting Multiple Form Objects
	The Name of a Form Object
	Inserting Form Objects
	Events and Actions Associated with Form Objects

	Editor Tools in the Form Editor
	Button
	Choosing Commands to Run
	Converting a Command Sequence to a Method
	Setting Values of Parameters and Variables
	Changing which Form is Visible
	Showing a Form as a Dialog Box
	Appearance

	Graphics
	Selecting the Source for Initial Graphics Content
	Appearance
	Graphics Commands
	Using Multiple Graphics Objects
	Graphics Toolbar
	Animations
	Selections

	Input Field
	Data Validation
	Number Format
	Appearance

	Unit
	Text Label
	Data Display
	Source
	Using the New Form Wizard for Generating Data Display Objects
	Number Format
	Rendering Method

	Model Data Access in the Form Editor
	Model Data Access for Input Fields
	Model Data Access for Buttons
	Summary of Model Data Access

	Sketch and Grid Layout
	Sketch Layout
	Grid Layout

	Copying Between Applications

	The Main Window
	General
	Main Form
	Size
	About Dialog
	Menu Bar and Toolbar
	Menu, Item, and Separator

	Ribbon
	Ribbon Tab and Ribbon Section

	Events
	Events at Startup and Shutdown
	Global Events
	Source For Data Change Event
	Choose Commands to Run

	Form and Form Object Events
	Events Triggered by Data Change
	Events Triggered by Loading or Closing a Form

	Using Local Methods

	Declarations
	Using Declarations as Input Arguments to Commands
	The Name of a Variable
	Scalar
	String
	Boolean
	Integer and Double

	Array 1D
	Initial Values
	Array Syntax

	Array 2D
	Initial Values
	Array Syntax

	Choice List
	Activation Condition

	File
	Unit Set
	Shortcuts

	The Method Editor
	Converting a Command Sequence to a Method
	Form Object with Associated Method

	Language Elements Window
	Editor Tools in the Method Editor
	Keyboard Shortcuts

	Model Data Access in the Method Editor
	Recording Code
	Checking Syntax
	Find and Replace
	Model Expressions Window
	Extracting Variables
	Syntax Highlighting, Code Folding, and Indentation
	The Name of a Method

	Method Editor Preferences
	Ctrl+Space and Tab for Code Completion
	Local Methods
	Local Methods for Buttons, Menu Items, and Global Events
	Local Methods for Form and Form Object Events

	Methods with Input and Output Arguments
	Debugging
	Stopping a Method
	The Model Object
	Language Element Examples
	Unary and Binary Operators in the Model Object
	Unary and Binary Operators in Methods (JavaÒ Syntax)
	Accessing a Variable in the Declarations Node
	Built-in Elementary Math Functions
	The IF Statement
	The For Statement
	The While Statement
	The With Statement
	Accessing a Global Parameter
	Comparing Strings
	Alerts and Messages

	Libraries
	Images
	Sounds
	Files

	Appendix A — Form Objects
	List of All Form Objects
	Toggle Button
	Using a Toggle Button to Enable and Disable a Heat Source

	Check Box
	Using a Check Box to Control Visualization
	Using a Check Box to Enable and Disable Form Objects

	Combo Box
	Using a Combo Box to Change Parameters in Results
	Using a Combo Box to Change Times
	Using a Combo Box to Change Material
	Using a Combo Box to Change Element Size
	Using a Unit Set instead of a Choice List

	Equation
	Line
	Web Page
	Image
	Video
	Progress Bar
	Log
	Message Log
	Results Table
	Results Table Toolbar
	Controlling Results Tables from Methods

	Form
	Form Collection
	Card Stack
	Using a Card Stack to Flip Between Graphics Objects

	File Import
	Alternatives to Using a File Import Object

	Information Card Stack
	Array Input
	Using an Array Input Object for 3D Point Coordinate Input

	Radio Button
	Using Radio Buttons to Select a Load
	Using a Unit Set instead of a Choice List

	Selection Input
	Text
	List Box
	Using a List Box to Superimpose Vibrational Modes
	Using a Unit Set instead of a Choice List

	Table
	Toolbar

	Slider
	Using a Slider to Change the Magnitude of a Structural Load

	Hyperlink
	Toolbar
	Spacer

	Appendix B — Copying Between Applications
	Appendix C — File Handling and File Scheme Syntax
	File Handling with COMSOL Server
	Saving and Opening Files using File Commands
	Model Commands

	File Scheme Syntax
	File Import
	CAD Import using the Model Tree and a File Import Object
	File Import in Methods
	File Access and File Declarations
	Importing Experimental Data

	File Export
	File Export using the Model Tree
	File Export to a Temporary File
	Creating Reports using Low-Level Functionality

	Appendix D — Keyboard Shortcuts
	Appendix E — Built-in Method Library
	Model Utility Methods
	File Methods
	Operating System Methods
	Email Methods
	Email Class Methods
	Email Preferences

	GUI-Related Methods
	GUI Command Methods
	Debug Method
	Methods for External C Libraries
	External Method
	Methods Returned by the External Method

	Progress Methods
	Date and Time Methods
	License Methods
	Conversion Methods
	Array Methods
	String Methods
	Collection Methods
	With, Get, and Set Methods

	Appendix F — Guidelines for Building Applications
	General Tips
	Methods
	Forms

	Appendix G — The Application Library Examples
	Beam Subjected to Traveling Load
	Helical Static Mixer
	Transmission Line Calculator
	Tubular Reactor
	Tuning Fork
	Induction Heating of a Steel Billet
	Touchscreen Simulator
	Absorptive Muffler Designer
	Acoustic Reflection Analyzer
	Li-Ion Battery Impedance
	Inkjet
	Water Treatment Basin
	Biosensor Design
	Membrane Dialysis
	Concentric Tube Heat Exchanger
	Heat Sink with Fins
	Equivalent Properties of Periodic Microstructures
	Red Blood Cell Separation
	Mixer
	Truck Mounted Crane Analyzer
	Laminar Static Particle Mixer Designer
	Distributed Bragg Reflector Filter
	Frequency Selective Surface Simulator
	Microstrip Patch Antenna Array Synthesizer
	Wavelength Tunable LED
	Beam Section Calculator
	Truss Tower Buckling
	Fiber Simulator
	Plasmonic Wire Grating

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

