The Fluid Flow Interface > The Single-Phase Flow, Laminar Flow Interface > The Laminar Flow Interface

The Laminar Flow Interface
The Laminar Flow (spf) interface () is used to compute the velocity and pressure fields for the flow of a single-phase fluid in the laminar flow regime. A flow remains laminar as long as the Reynolds number is below a certain critical value. At higher Reynolds numbers, disturbances have a tendency to grow and cause transition to turbulence. This critical Reynolds number depends on the model, but a classical example is pipe flow where the critical Reynolds number is known to be approximately 2000.
The physics interface supports incompressible flow, weakly compressible flow (the density depends on temperature but not pressure) and compressible flow at low Mach numbers (typically less than 0.3). It also supports flow of non-Newtonian fluids.
The equations solved by the Laminar Flow interface are the Navier-Stokes equations for conservation of momentum and the continuity equation for conservation of mass.
The Laminar Flow interface can be used for stationary and time-dependent analyses. Time-dependent studies should be used in the high-Reynolds number regime as these flows tend to become inherently unsteady.
When the Laminar Flow interface is added, the following default nodes are also added in the Model Builder: Fluid Properties, Wall (the default boundary condition is No slip), and Initial Values. Other nodes, that implement, for example, boundary conditions and volume forces, can be added from the Physics toolbar or from the context menu displayed when right-clicking Laminar Flow.
Settings
The Label is the default physics interface name.
The Name is used primarily as a scope prefix for variables defined by the physics interface. Physics interface variables can be referred to using the pattern <name>.<variable_name>. In order to distinguish between variables belonging to different physics interfaces, the name string must be unique. Only letters, numbers, and underscores (_) are permitted in the Name field. The first character must be a letter.
The default Name (for the first physics interface in the model) is spf.
Physical Model
Compressibility
Depending of the fluid properties and the flow regime, three options are available for the Compressibility option. In general the computational complexity increases from Incompressible flow to Weakly compressible flow to Compressible flow (Ma<0.3) but the underlying hypotheses are increasingly more restrictive in the opposite direction.
When the Incompressible flow option (default) is selected, the incompressible form of the Navier-Stokes and continuity equations is applied. In addition, the fluid density is evaluated at the Reference pressure level and at the Reference temperature defined in Reference values. The fluid dynamic viscosity is evaluated at the Reference temperature.
The Weakly compressible flow option models compressible flow when the pressure dependency of the density can be neglected. When selected, the compressible form of the Navier-Stokes and continuity equations is applied. In addition, the fluid density is evaluated at the Reference pressure level defined in Reference values.
When the Compressible flow (Ma<0.3) option is selected, the compressible form of the Navier-Stokes and continuity equations is applied. Ma < 0.3 indicates that the inlet and outlet conditions, as well as the stabilization, may not be suitable for transonic and supersonic flow. For more information, see The Mach Number Limit.
Porous Media Domains
With the addition of various modules, the Enable porous media domains check box is available. Selecting this option, a Fluid and Matrix Properties node, a Mass Source node, and a Forchheimer Drag subnode are added to the physics interface. These are described for the Brinkman Equations interface in the respective module’s documentation. The Fluid and Matrix Properties can be applied on all domains or on a subset of the domains.
Reference values
Reference values are global quantities used to evaluate the density and viscosity of the fluid when the Incompressible flow or the Weakly compressible flow option is selected.
Reference pressure level
There are generally two ways to include the pressure in fluid flow computations: either to use the absolute pressure pA=p+pref, or the gauge pressure p. When pref is nonzero, the physics interface solves for the gauge pressure whereas material properties are evaluated using the absolute pressure. The reference pressure level is also .
Reference temperature
The reference temperature is 293.15 K.
Reference position
When Include gravity is selected, the reference position can be defined. It corresponds to the location where the total pressure (that includes the hydrostatic pressure) is equal to the Reference pressure level.
Dependent Variables
The following dependent variables (fields) are defined for this physics interface—the Velocity field u and its components, and the Pressure p.
If required, the names of the field, component, and dependent variable may be edited. Editing the name of a scalar dependent variable changes both its field name and the dependent variable name. If a new field name coincides with the name of another field of the same type, the fields share degrees of freedom and dependent variable names. A new field name must not coincide with the name of a field of another type or with a component name belonging to some other field. Component names must be unique within a model except when two fields share a common field name.
Advanced Settings
To display this section, click the Show button () and select Advanced Physics Options. Normally these settings do not need to be changed.
The Use pseudo time stepping for stationary equation form option adds pseudo time derivatives to the equation when the Stationary equation form is used in order to speed up convergence. When selected, a CFL number expression should also be defined. For the default Automatic option, the local CFL number (from the Courant–Friedrichs–Lewy condition) is determined by a PID regulator.
Flow Past a Cylinder: Application Library path COMSOL_Multiphysics/Fluid_Dynamics/cylinder_flow